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Moreh develops software to enable various AI workloads – from pretraining to 
inference – to run efficiently on non-NVIDIA accelerators, with a particular focus on 
AMD GPUs. 

vLLM is one of the most widely adopted inference engines for running LLM services 
in research, enterprise, and production environments. It is developed by a strong 
open-source community with contributions from both academia and industry, and 
provides broad support for various models, hardware, and optimization techniques. 
AMD is also contributing to the project to make vLLM run on AMD GPUs and the 
ROCm software stack. Nevertheless, most optimizations in vLLM still target NVIDIA 
GPUs, and the performance of AMD GPU hardware has yet to be fully utilized. 

Moreh vLLM is our optimized version of vLLM, designed to deliver superior LLM 
inference performance on AMD GPUs. It supports the same models and features as 
the original vLLM, while maximizing computational performance on the AMD CDNA 
architecture. This is achieved through Moreh’s proprietary compute and 
communication libraries, along with model-level optimizations and vLLM engine-
level modifications. 

This technical report evaluates the inference performance of the DeepSeek V3/R1 
671B model – one of the most advanced open-source LLMs available today – on Moreh 
vLLM. We conduct comprehensive testing across various input/output lengths and 
concurrency levels. Compared to the original vLLM, Moreh vLLM delivers an average 
of 1.68x higher throughput (total output tokens per second). Furthermore, it reduces 
latency metrics (time to first token and time per output token) by an average of 1.75x 
and 1.70x, respectively. In conclusion, adopting Moreh vLLM unlocks the full 
potential of AMD MI300 series GPUs, enabling them to serve as an efficient inference 
system. 
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The AMD Instinct MI300X GPU presents a compelling alternative to NVIDIA’s H100. It 
provides 1.32x higher theoretical compute performance, 2.4x larger memory capacity, 
and 1.58x higher peak memory bandwidth compared to the H100. In particular, its 
significantly larger memory capacity and bandwidth are a major advantage for 
optimizing LLM inference. Table 1 compares the detailed hardware specifications. 

Table 1. Comparison between NVIDIA H100 and AMD MI300X 

Items H100 SXM MI300X Relative 
(MI300X/H100) 

Basic facts 
Architecture Hopper CDNA3  
Form factor SXM5 module OAM module  
Lithography TSMC 4 nm TSMC 5 nm  
# SMs (compute units) 132 304  
# cores 16,896 19,456  
# tensor/matrix cores 528 1,216  
Peak engine clock 1,830 MHz 2,100 MHz  
TDP 700 W 750 W  
Peak theoretical performance (dense) 
FP32 vector 66.9 TFLOPS 163.4 TFLOPS 2.44x 
TF32 matrix 494.7 TFLOPS 653.7 TFLOPS 1.32x 
FP16/BF16 matrix 989.4 TFLOPS 1,307.4 TFLOPS 1.32x 
FP8 matrix 1978.9 TFLOPS 2,614.9 TFLOPS 1.32x 
INT8 matrix 1978.9 TOPS 2,614.9 TOPS 1.32x 
GPU memory 
Technology HBM3 HBM3 - 
Capacity 80 GB 192 GB 2.40x 
Peak bandwidth 3.35 TB/s 5.3 TB/s 1.58x 
Cache and scratchpad 
L1D + scratchpad 256 KB per SM 32+64 KB per SM 0.38x 
L2/L3 50 MB L2 32 MB L2, 256 MB L3 - 
Connectivity (H2D: host to device, D2D: device to device within a server) 
H2D interface PCIe Gen5 x16 PCIe Gen5 x16 - 
H2D bandwidth 128 GB/s 128 GB/s 1.00x 
D2D interface NVLink Gen4 Infinity Fabric Gen4 - 
D2D bandwidth 900 GB/s 896 GB/s 0.996x 
# GPUs per server 8 8 1.00x 
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AMD has also released the MI325X and MI355X as successors to the MI300X, which 
are direct competitors to NVIDIA’s H200 and B200 GPUs, respectively. Since these next-
generation models are also based on the AMD CDNA3 architecture, all optimizations 
within Moreh vLLM will continue to apply seamlessly. We plan to publish 
performance evaluation results on the MI325X and MI355X in the near future and are 
always open to partners who can provide development and testing servers. 

Moreh vLLM incorporates numerous optimizations to enhance the performance of 
the DeepSeek 671B model, including, but not limited to: 

⚫ Optimal GEMM and Attention Kernel Selection: To achieve consistently 
high performance across various scenarios (e.g., different input/output 
sequence lengths and batch sizes), Moreh vLLM dynamically selects the 
optimal GEMM and Attention kernels without the need for online profiling 
and manual tuning. 

⚫ Fused MoE Kernel Optimization: We have implemented a highly optimized 
fused MoE kernel that delivers better performance than AMD’s AITER library, 
particularly for small batch sizes. 

⚫ FP8 KV Cache Support: Moreh vLLM includes Mult-head Latent Attention 
(MLA) kernels that enables the KV cache to be stored and loaded in FP8 
format. This optimization significantly improves performance, especially in 
long-context scenarios. 

⚫ Vertical and Horizontal Kernel Fusion: Moreh vLLM employs both vertical 
fusion (e.g., fused RoPE kernels) and horizontal fusion (e.g., merging multiple 
GEMMs in shared experts) to reduce kernel launch overhead and improve 
computational efficiency. 

⚫ vLLM Engine-Level Modifications: We have made modifications at the 
vLLM engine level to more efficiently utilize AMD GPUs, including leveraging 
HIP graphs for streamlined kernel execution. 

All experiments were conducted on an MI300X server configured as follows: 

⚫ Server: Lenovo ThinkSystem SR685a V3 
⚫ CPU: 2x AMD EPYC 9534 (128 cores in total, 2.45 GHz) 
⚫ GPU: 8x AMD Instinct MI300X OAM 
⚫ Main Memory: 2,304 GB (24x 96 GB) 
⚫ Operating System: Ubuntu 22.04.4 (Linux kernel 5.15.0-25-generic) 
⚫ ROCm Version: 6.8.5 
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We used the open-source vLLM 0.9.2 (tag v0.9.2 of https://github.com/ROCm/vllm) as a 
baseline for comparison. This was the latest versions available at the time of testing. 

The DeepSeek model was executed in parallel across 8 GPUs of the server with a 
tensor parallelism (TP) of 8. Thanks to AMD MI300X’s large memory capacity of 192 
GB, over half of the GPU memory remains available even after storing ~84 billion 
parameters per GPU in FP8 format. This allows the server to handle numerous 
requests with high concurrency, showcasing a significant advantage for large-scale 
generative AI workloads. 

Performance was measured using vLLM’s benchmark_serving tool. We chose 70 
different combinations of input sequence length (ISL), output sequence length (OSL), 
and concurrency, as shown in Table 2. 

The experimental setup was determined through discussions with one of our 
customers in Korea. 

Table 2. Various request patterns used for performance measurement 

Input sequence 
length (ISL) 

Output sequence 
length (OSL) 

Concurrencies 

1024 1024 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 
1024 4096 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 
4096 1024 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 
4096 4096 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 

16384 1024 1, 2, 4, 8, 16, 32, 64, 128 
16384 4096 1, 2, 4, 8, 16, 32, 64, 128 
32768 1024 1, 2, 4, 8, 16, 32, 64 
32768 4096 1, 2, 4, 8, 16, 32, 64 

 

Output tokens per second (TPS), time to first token (TTFT), and time per output token 
(TPOT) are three key metrics for evaluating the performance of LLM inference. 

⚫ Output tokens per second measures the overall throughput of the system, 
indicating how many tokens the model can generate in one second across all 
concurrent requests. 

⚫ Time to first token captures the initial latency – the time from when a request 
is sent until the very first token is produced. 

⚫ Time per output token indicates the average time taken to generate each 
subsequent token after the first one. 
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Output tokens per second is directly tied to service cost (dollar per token). The latter 
two metrics are important for user-perceived responsiveness. Together, measuring 
these three metrics provides a comprehensive view of inference performance, 
balancing cost and user experience. 

Figure 1 shows a graph comparing output tokens per second. Figure 2 and Figure 3 
present graphs comparing the mean time to first token and the mean time per output 
token, respectively. The raw data can be found in the appendix. Moreh vLLM achieves 
1.68x higher total output tokens per second, 1.75x lower time to first token, and 1.7x 
lower time per output token compared to the original vLLM. This demonstrates that 
simply replacing the software with Moreh vLLM on the same AMD MI300 series GPU 
system can reduce costs while improving user experience. 

 

Figure 1. Output tokens per second for various request patterns. Higher is better. 
Moreh vLLM shows an average of 1.68x higher performance. 
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Figure 2. Mean time to first token for various request patterns. Lower is better. Moreh 
vLLM shows an average of 1.75x lower latency. 

 

Figure 3. Mean time per output token for various request patterns. Lower is better. 
Moreh vLLM shows an average of 1.70x lower latency. 
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LLM inference involves an inherent trade-off between latency and throughput. 
Increasing the maximum concurrency of a vLLM instance improves throughput but 
also increases latency, while decreasing concurrency improves latency but lowers 
throughput. 

Figure 4 illustrates these latency-throughput trade-off curves for the original vLLM 
and Moreh vLLM across various request patterns (input/output sequence lengths). 
Overall, the closer the graph shifts toward the upper left, the better the performance 
characteristics. 

 

Figure 4. Trade-off curves between time per output token (latency) and output tokens 
per second (throughput), for different input/output sequence lengths. 

Moreh vLLM incorporates various techniques to optimize inference for the DeepSeek 
V3/R1 model, including proprietary GPU libraries, model-level optimizations, and 
modifications to the vLLM engine. As a result, Moreh vLLM delivers substantial 
performance improvements over the original open-source vLLM across various 
inference metrics. By adopting Moreh vLLM on AMD MI300 series GPU servers, LLM 
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services can reduce costs while simultaneously improving latency. Moreh also 
provides a service that optimizes a customer’s proprietary AI model on AMD GPUs 
and delivers on-demand vLLM for it. 

Request patterns Moreh vLLM 0.9.0 ROCm vLLM 0.9.2 
ISL OSL Conc. Output 

TPS 
Mean 

TTFT (ms) 
Mean 

TPOT (ms) 
Output 

TPS 
Mean 

TTFT (ms) 
Mean 

TPOT (ms) 
1024 1024 1 67.66 68.87 14.73 33.19 117.75 30.05 
1024 1024 2 127.42 101.03 15.61 60.66 673.78 32.34 
1024 1024 4 240.54 157.81 16.49 115.68 1570.5 33.07 
1024 1024 8 407.51 258.76 19.39 211.3 2576.59 35.37 
1024 1024 16 681.79 371.38 23.12 379.63 1178.78 41.01 
1024 1024 32 1088.31 789.45 28.63 630 1640.65 49.19 
1024 1024 64 1681.08 946.86 37.12 1041.09 2434.3 59.06 
1024 1024 128 2491.89 1738.42 49.56 1618.89 3985.35 74.99 
1024 1024 256 3426.59 3625.25 70.81 2258.75 6942.03 106.09 
1024 1024 512 4188.01 8328.91 113.07 2888.9 13220.19 163.02 
1024 4096 1 67.84 26.25 14.74 29.66 44.9 33.72 
1024 4096 2 128.8 36.97 15.52 58.48 69.19 34.19 
1024 4096 4 241.82 49.13 16.53 116.79 79.56 34.24 
1024 4096 8 408.53 68.11 19.57 230.29 92.15 34.72 
1024 4096 16 668.38 115.34 23.91 412.03 123.06 38.81 
1024 4096 32 1050.95 695.65 30.28 671.76 2496.33 47.02 
1024 4096 64 1647.27 1219.32 38.54 1132.97 2151.3 55.95 
1024 4096 128 2400.07 2469.2 52.68 1741.15 3544.58 72.6 
1024 4096 256 2989.84 8761.55 79.91 2347.09 12489.49 103.73 
1024 4096 512 2865.59 50932.74 140.1 2291.7 60350.75 180.37 
4096 1024 1 63.56 168.89 15.58 31.5 244.11 31.54 
4096 1024 2 123.53 241.76 15.96 60.31 452.43 32.74 
4096 1024 4 230.56 382.56 16.98 116.04 871.03 33.62 
4096 1024 8 383.13 641.39 20.25 207.82 1555.13 36.97 
4096 1024 16 602.42 1148.78 25.41 340.33 2501.4 44.54 
4096 1024 32 905.92 2037.01 33.24 519.28 4351.16 57.25 
4096 1024 64 1283.34 5667.4 44.09 770.49 7444.9 75.48 
4096 1024 128 1699.79 10904.04 64.01 1044.22 13633.68 108.44 
4096 1024 256 1636.3 21452.36 123.44 1245.4 27480.28 172.01 
4096 1024 512 1498.15 145456.58 152.69 1191.79 180087.52 206.4 
4096 4096 1 62.02 169.1 16.09 30.49 504.59 32.69 
4096 4096 2 122.22 246.52 16.31 60.53 460.12 32.94 
4096 4096 4 231.21 389.42 17.21 117.97 873.01 33.7 
4096 4096 8 389.51 643.49 20.38 217.6 1666.97 36.36 
4096 4096 16 619.44 1344.41 25.49 373.34 2462.39 42.24 
4096 4096 32 972.65 2406.18 32.28 605.53 4135.62 51.8 
4096 4096 64 1426.07 4568.72 43.69 968.33 7340.71 64.21 
4096 4096 128 1955.28 8842.49 63.1 1398.04 13732.72 87.97 
4096 4096 256 1736.1 85503.85 109.68 1380.32 94500.17 138.72 
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4096 4096 512 1654.59 515697.59 128.44 1351.04 599442.6 165.24 
16384 1024 1 51.55 679.9 18.75 27.71 918.52 35.23 
16384 1024 2 106.01 988.41 17.9 55.48 1828.67 34.28 
16384 1024 4 187.84 1749.99 19.56 98.23 3354.89 37.42 
16384 1024 8 280.33 3313 25.23 153.12 5958.53 46.33 
16384 1024 16 390.64 6513.2 34.41 215.59 9260.04 64.92 
16384 1024 32 495.8 11657.99 52.68 282.09 16496.45 96.69 
16384 1024 64 624.79 21913.35 79.83 349.39 30946.86 151.37 
16384 1024 128 435.75 130014.42 138.95 328.6 158813.8 194.41 
16384 4096 1 51.87 680.16 19.12 28.04 916.8 35.45 
16384 4096 2 110.32 985.81 17.89 58.4 1825.71 33.8 
16384 4096 4 202.79 2474.91 19.11 111.04 3218.31 35.23 
16384 4096 8 328 3308.94 23.56 187.79 5459.98 41.24 
16384 4096 16 495.07 6029.75 30.79 302.31 9106.35 50.63 
16384 4096 32 676.93 11445.82 44.35 435.15 16348.36 69.37 
16384 4096 64 682.57 26408.54 78.04 546.01 33073.29 102.09 
16384 4096 128 633.63 312895.79 94.46 526.67 372806.36 123.42 
32768 1024 1 40.76 1619.06 22.98 23.59 2142.13 40.35 
32768 1024 2 85.07 2947.79 20.62 48.07 5131.4 36.58 
32768 1024 4 145.97 4265.61 23.17 77.46 9006.42 42.76 
32768 1024 8 197.27 8546.05 32.03 108.06 11793.94 62.28 
32768 1024 16 253.62 15032.53 47.97 136.75 22232.48 94.7 
32768 1024 32 306.4 26950.98 77.01 159.79 37871.35 161.83 
32768 1024 64 197.15 145957.44 154.46 148.77 178245.2 216.6 
32768 4096 1 42.23 1629.71 23.29 24.14 2398.39 40.84 
32768 4096 2 97.48 2449.27 19.91 53.99 5101.95 35.79 
32768 4096 4 173.55 5263.17 21.74 98.91 7008.72 38.71 
32768 4096 8 264.33 8294.78 28.19 161.55 13814.27 46.08 
32768 4096 16 363.12 15964.79 40.03 233.25 20647.09 63.4 
32768 4096 32 396.86 29920.93 69.14 312.04 37258.33 93.07 
32768 4096 64 338.29 318451.11 93.56 259.36 368561.16 127.47 
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