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Moreh-Tenstorrent Al Data Center Solution
System Architecture

Overview

Moreh’s mission is to provide alternative options to NVIDIA GPUs for Al data centers
through advanced software technologies. As part of this effort, we have been working
closely with Tenstorrent and will be launching a data center solution in Q4 2025.
Tenstorrent, led by legendary semiconductor architect Jim Keller, delivers scalable
hardware through network-integrated Al chips. On top of that, Moreh adds its unique
cluster architecture and software for efficiently utilizing many chips, completing a
full-stack solution. We are confident that this is the best option to minimize the total
cost of ownership (TCO) of Al data centers.

This article describes the architecture of the Tenstorrent solution we provide. Our
approach, chip architecture, cluster architecture, and software architecture are
fundamentally differentiated from conventional NVIDIA GPUs and DGX systems. We
explain how this enables us to optimize large-scale Al infrastructure. Below is a
summary of our differentiators:

® Approach

— We employ a larger number of lighter chips compared to GPUs, achieving
high performance and efficiency at the cluster level rather than at the
individual chip level.

— To realize this, scalable network architecture and software capable of
efficiently leveraging such many chips are essential.

— Since individual chips do not require extremely high performance, they can
be built on older process nodes (e.g., 6 nm or 12 nm) and use GDDR memory
instead of HBM, thereby maximizing overall cost efficiency.

— The chips are not limited to inference but can be used for both training and
inference. This is a crucial factor for large-scale Al data centers when
adopting a new type of processor.

® Chip architecture

— Large software-managed SRAMs (approximately 1.5 MB per core) are
adopted instead of a complex hardware-managed memory hierarchy such
as coherent shared caches. With proper software support, this can minimize
off-chip memory bandwidth requirements.



— Intra-chip inter-core communication is performed explicitly through a 2D
torus Network-on-Chip (NoC), rather than indirectly via shared memory or
caches. This allows direct data exchange between cores without consuming
bandwidth from off-chip memory or shared caches, while giving the
software more room to optimize data movement.

— A Dblock floating-point format is supported, where 16 adjacent elements
share a common exponent. This reduces memory footprint and bandwidth
requirements by approximately half, without causing significant impact on
accuracy.

® Cluster architecture

— Each chip is equipped with built-in Ethernet interfaces, enabling direct data
transfer between two linked chips with low latency and without CPU
intervention.

— Multiple chips are interconnected through a torus network, without
requiring a complex switch network (similar to Google’s TPU clustering
approach). A torus network is beneficial for communication patterns of
typical AI workloads.

® Software architecture

— We provide an inference framework that performs distributed inference
across multiple nodes and chips, presenting them as a single unified
endpoint, and a training framework that allows multiple nodes and chips to
operate as a single PyTorch device.

— Data distribution, task allocation, and inter-chip communication are
automated by software. Consequently, although the number of chips
increases compared to a GPU cluster, the overall infrastructure becomes
easier to utilize, with workloads distributed to enable efficient
communication over the torus network.

Overall System Architecture

Figure 1 conceptually illustrates the overall hardware hierarchy of the Tenstorrent Al
data center solution. Two chip generations — Wormhole and Blackhole — are currently
available. Although they differ in detailed specifications, their architecture is largely
similar.



Tenstorrent chip
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Figure 1. Hardware hierarchy from Tensix cores to Tenstorrent chips, Galaxy servers,
and Galaxy clusters.

Each chip integrates numerous Tensix cores, general-purpose RISC-V cores (available
only in Blackhole), GDDR memory interfaces, Ethernet interfaces, and PCle interfaces,
all connected through a unified 2D torus NoC. The Tensix cores are specialized for
tensor operations in Al workloads and include an FPU for matrix multiplication, an
SFPU for vector operation, and local SRAM.

A Galaxy server is equipped with 32 Tenstorrent chips. We expect that roughly four
Tenstorrent chips will deliver performance comparable to a single GPU. Specifically,
four Wormbhole chips correspond to one NVIDIA A100, and four Blackhole chips
correspond to one NVIDIA H100. Therefore, a single Galaxy server with 32 chips is
equivalent in performance to a conventional 8-GPU server.



Each chip’s Ethernet interfaces can be directly connected to those of other chips
without passing through network switches. According to our cluster architecture,
Wormbhole is connected to neighboring chips in four directions - east, west, north, and
south — while Blackhole adds two more connections in the up and down directions, for
a total of six. Within a Galaxy server, the 32 chips are pre-connected in hardware in
an 8<4 mesh. The Ethernet interfaces located at the “edges” of the mesh are exposed
as the server’s Ethernet ports, which are cabled to those on neighboring servers. As a
result, chips across multiple servers are interconnected in a flat torus network,
seamlessly linking the inside and outside of each server without any hierarchical
distinction.

From the software perspective, Tenstorrent provides an open-source low-level SDK
called TT-Metalium. It includes a runtime system, kernels (TT-LLK) and a compiler for
the Tensix cores, and an inter-chip Ethernet communication stack (TT-Fabric). On top
of that, we have added our own proprietary software, including tensor operation and
communication libraries (independent of Tenstorrent’s TT-NN and CCL) as well as
inference and training frameworks.

Wormhole and Blackhole Processors

Hardware Specifications

Table 1 summarizes the hardware specifications of Wormhole and Blackhole. Note
that the chips operate with different specifications when used on PCle cards versus in
Galaxy servers (e.g., available cores, theoretical performance, memory bandwidth,
TDP, and interconnect configuration). All figures in the table represent the
specifications for the Galaxy server configuration.



Table 1. Specifications of Wormhole and Blackhole

Items Wormbhole Blackhole
Basic facts
Lithography GlobalFoundries 12 nm TSMC 6 nm
Al core architecture Tensix Tensix
# Al cores 80 (72 available) 140
General-purpose core architecture - RISC-V
# general cores - 16
Clock frequency 1.0 GHz 1.35 GHz
TDP 250 W 300 W
Theoretical peak performance
TF32 matrix 73.7 TFLOPS! 193.5 TFLOPS
FP16 matrix 73.7 TFLOPS' 193.5 TFLOPS
BF16 matrix 147.5 TFLOPS' 387.1 TFLOPS
BLOCKFP8 matrix 147.5 TFLOPS' 387.1 TFLOPS
FP8 matrix 294.9 TFLOPS' 774.1 TFLOPS
BLOCKFP4 matrix 294.9 TFLOPS' 774.1 TFLOPS
Network-on-Chip
Individual link bandwidth 32 B/cycle 64 B/cycle
Aggregated bandwidth 15.36 TB/s 70.50 TB/s
On-chip SRAM
Total SRAM 114 MB 210 MB
SRAM per core 1.4 MB 1.5 MB
Off-chip memory
Technology GDDR6 GDDR6
Capacity 12 GB 32 GB
Peak bandwidth 336 GB/s 512 GB/s
Connectivity
Host-to-chip interface PCIe Gen4 x8 or x1 PCIe Gen5 x8 or x1
Host-to-chip bandwidth 32 GB/s 64 GB/s
Chip-to-chip interface (physical) 16x 100 Gbps Ethernet 10x 400 Gbps Ethernet
Chip-to-chip interface (aggregated) 4x 400 Gbps 4x 800 Gbps + 2x 400 Ghps
Chip-to-chip total bandwidth 400 GB/s 1,000 GB/s

! Due to the limitations in the runtime implementation of TT-Metalium, only 72 out of 80 Tensix cores on Wormhole
can be used for computation. Therefore, the theoretical peak performance of Wormhole shown here represents the
performance of these 72 cores, rather than that of all 80 cores.



Comparison with NVIDIA GPUs

Table 2 compares the specifications between NVIDIA GPUs and Tenstorrent chips. As
mentioned earlier, we consider four Wormhole chips to correspond to one NVIDIA
A100 80 GB SXM, four Blackhole chips to one NVIDIA H100 SXM, and eight Blackhole
chips to one NVIDIA B200. Based on these equivalences, we compare computational
performance, SRAM (or L2 cache) capacity, DRAM capacity and bandwidth, and inter-
chip communication bandwidth — NVLink for NVIDIA and Ethernet for Tenstorrent.
The values in parenthesis indicate the relative levels of Tenstorrent chips compared
to NVIDIA GPUs; higher is better.

Roughly speaking, four or eight Tenstorrent chips offer higher computational
performance, more than 10x larger SRAM capacity compared to GPU’s L2 cache, and
higher inter-chip communication bandwidth compared to NVIDIA’s NVLink. On the
other hand, their memory bandwidth is only about half that of GPUs, but this
limitation can be mitigated through the effective use of large on-chip SRAM and the
block floating-point data format.

Table 2. Comparison between NVIDIA GPUs and the corresponding four or eight
Tenstorrent chips

Items A100 4x H100 4x B200 8x
Wormhole Blackhole Blackhole

TF32 matrix? 156 295 495 774 1,100 1,548
(TFLOPS) (1.00x) (1.89x) (1.00x) (1.56x) (1.00x) (1.41x)
BF16 matrix’ 312 590 989 1,548 2,200 3,097
(TFLOPS) (1.00x) (1.89x) (1.00x) (1.56x) (1.00x) (1.40x)
FP8 matrix” - 1,180 1,979 3,097 4,500 6,193
(TFLOPS) (1.00x) (1.56x%) (1.00x) (1.38x)
SRAM or L2 cache 40 456 50 840 50 1,680
capacity (MB) (1.00x) (11.4x) (1.00x) (16.8x) (1.00x) (33.6%)
DRAM capacity 80 48 80 128 192 256
(GB) (1.00x) (0.60x) (1.00x) (1.60x) (1.00x) (1.33x)
DRAM peak 2,039 1,344 3,352 2,048 7,700 4,096
bandwidth (GB/s) (1.00x) (0.66x) (1.00x) (0.61x) (1.00x) (0.53x)
Chip-to-chip 600 1,000 900 2,800° 1,800 5,200°
interconnect (1.00x) (1.67x) (1.00x) (3.11x) (1.00x) (2.89x%)
bandwidth (GB/s)

2 All performance figures are based on dense matrix computations.

% The aggregate Ethernet bandwidth of four Wormhole chips is 1,600 GB/s, not 1,000 GB/s. However, some of their
Ethernet links must be used to interconnect them, which is unnecessary for a single NVIDIA GPU. To ensure a fair



Tensix Core Architecture
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Figure 2. The architecture of a Tensix core.

The Tensix core is the key building block of Tenstorrent processors. Figure 2 shows

the overall structure of a Tensix core. Each core contains two computation units: an
FPU for matrix multiplication and an SFPU for vector operations. It also includes 32
KB of destination registers and approximately 1.5 MB of local SRAM.

In general, data are first transferred from off-chip memory or from other cores/chips
through the NoC (to be described later) and stored in the SRAM. The data are then
fetched from the SRAM into the registers (called unpacking), processed by the FPU or
SFPU, written back from the registers to the SRAM (called packing), and finally sent
back through the NoC to off-chip memory or to other cores/chips. During this process,
data are typically handled in tiles of 32><32 elements.

Each Tensix core contains five “baby” RISC-V sub-cores to control these components
simultaneously. Although the roles of each sub-core is not strictly defined, typically
one handles data movement from the NoC to the SRAM, one manages unpacking, one
issues FPU/SFPU instructions, one manages packing, and one handles data movement
from the SRAM to the NoC.

In other words, instead of implementing out-of-order execution at the hardware level,
five baby RISC-V sub-cores run different kernel codes to explicitly achieve instruction-
level parallelism (ILP). This approach simplifies the hardware design but requires
specialized expertise to implement high-performance Tensix kernels. As Tenstorrent’s
leading software partner, Moreh possesses this expertise and has developed and
delivered optimized tensor operation libraries.

The SRAM of a Tensix core is much larger than the L1 cache of a GPU (for example,
the L1 cache of the NVIDIA A100 is 192 KB). At the same time, as mentioned earlier,
the total SRAM capacity — calculated as per-core SRAM size X the number of cores —

comparison, the bandwidth figures presented here exclude the links required to interconnect four or eight
Tenstorrent chips in a linear topology.



is also much greater than the L2 cache of a GPU. Because SRAM has its own address
space, separate from off-chip memory that is explicitly allocated and accessed by
software, we can precisely track which data are stored in each core’s SRAM across
multiple kernel executions. As a result, more intermediate results (e.g., activations)
can reside in SRAM, thereby reducing off-chip memory accesses without requiring
explicit kernel fusion as in GPUs. This is one of the reasons Tenstorrent chips can
adopt cost-effective GDDR instead of HBM.

Chip Layout and the Network-on-Chip

All components in a Tenstorrent chip, including Tensix cores, general-purpose RISC-V
cores, and various interfaces are arranged in a grid structure. Figure 3 illustrates the
logical grid layouts* of the Wormhole and Blackhole chips.

Wormhole Blackhole
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Figure 3. Logical placement of different tiles (Tensix, general-purpose RISC-V, GDDR,
Ethernet, PCIe, ARC, and security subsystem tiles) of Wormhole and Blackhole chips.

The Wormbhole chip is organized as a 1012 grid, in which 80 tiles are used for Tensix
cores, 18 for GDDR interfaces, 16 for Ethernet interfaces, 1 for a PCIe interface, 1 for
an ARC core, and the remaining 4 tiles are left empty. The Blackhole chip is organized
as a 17x12 grid, in which 140 tiles are used for Tensix cores, 8 for general-purpose
RISC-V cores, 24 for GDDR interfaces, 14 for Ethernet interfaces, 8 for PCle interfaces,
6 for SerDes modules, 2 for an ARC core and a security subsystem, and the remaining
2 tiles are left empty.

4 This figure illustrates the logical layout defined by the NoC, not the actual physical placement. The discrepancy
between the two is due to the physical implementation of the 2D torus NoC, which is explained on the following page:
https://tenstorrent.com/vision/community-highlight-tenstorrent-wormhole-series-part-1-physicalities



All tiles are interconnected through a 2D torus topology NoC. Each tile can exchange
data bidirectionally with its neighboring tiles in the four directions - east, west, north,
and south - at 32 bytes/cycle in Wormhole and 64 bytes/cycle in Blackhole. Each tile
contains two NoC routers, which relay communication between non-adjacent tiles.

NoC NoC NoC
Router < Router < Router
1 1 1
NoC NoC NoC
Router || Router Router [
0 0 0
I 21 2] I 2]
l'\ l\ v\\
N N
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p | 2] 2T
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Figure 4. A logical diagram illustrating the NoC connections between adjacent tiles.
NoC Router 0 handles data movement in the +X and +Y directions, while NoC Router 1
handles data movement in the -X and -Y directions.

All on-chip data movement — for example, between two Tensix cores, between a
Tensix core and GDDR memory, between a Tensix core and an Ethernet interface, or
between GDDR memory and an Ethernet interface — occurs through this unified NoC.
Specifically, the NoC provides a single address space that encompasses all Tensix core
SRAMs, off-chip GDDR memory, and Ethernet RX/TX queues. Arbitrary data transfers
can be implemented by programming the Tensix cores to read from and write to
specific NoC addresses.

This not only simplifies the chip architecture but also enables efficient and flexible
data movement that is not possible in conventional GPUs. For instance, each core can
directly send data from its own SRAM to Ethernet, bypassing GDDR as an
intermediary. This reduces communication latency and saves memory bandwidth.

The NoC supports multicast, allowing the same data to be efficiently broadcast to
multiple tiles arranged in a row or a column. This capability enables efficient loading
of off-chip memory data during matrix multiplications.



Block Floating-Point Types

The block floating-point format is one of the approaches used to store real numbers in
a compressed format. It is based on the observation that adjacent values belonging to
the same array (tensor) generally share similar scales. A recent example is the
Microscaling (MX) format, which has been adopted in some modern Al accelerators.
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Figure 5. Comparison among FP32, TF32, BF16, FP16, FP8 (E4M3 and E5M2), and
Tenstorrent’s BLOCKFP8, BLOCKFP4, and BLOCKFP2 formats.

Tenstorrent processors support their own block floating-point formats — BLOCKFPS,
BLOCKFP4, and BLOCKFP2. Each element has its own sign and mantissa, while every
group of 16 adjacent elements shares a single exponent. Figure 5 illustrates several
floating-point formats for comparison. BLOCKFPS8 uses a 7-bit mantissa and an 8-bit
shared exponent, occupying an average of 8.5 bits per element, while providing the
same dynamic range and precision as the standard BF16 type. BLOCKFP4 uses a 3-bit
mantissa and an 8-bit shared exponent, resulting in 4.5 bits per element, yet offering a
higher dynamic range and the same precision as FP8 E4M3.

As a result, by replacing the commonly used BF16 and FP8 types with BLOCKFP8 and
BLOCKEFP4, the same representational precision can be achieved while reducing
memory footprint, memory bandwidth requirements, and Ethernet bandwidth
requirements by nearly half. Our software provides the capability to execute various
LLM inference and training workloads using the block floating-point format.
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Galaxy Server

Figure 6. A picture of the Galaxy server.

Galaxy is Tenstorrent’s data center-class server product, equipped with 32 Wormhole
processors. Its detailed specifications are shown in Table 3. A model equipped with 32
Blackhole processors is planned to be released.

Table 3. Specifications of the Tenstorrent Wormhole Galaxy server

Items

Description

Form factor

6U rackmount

Chassis dimensions

W 447 mm X H266.7mm X D 884.5 mm

Server weight

119 kg

Al accelerators

32x Wormbhole

CPU

1x AMD EPYC 9004 series with TDP < 280 W

Main memory

576 GB (6x 96 GB) DDR5-4800 ECC RDIMM

PClIe connections

4x PCle Gen4 x8 lanes, 28x PCle Gen4 x1 lane

BMC management network

1x 1 GbE RJ-45

Host network

2x 100 GbE QSFP-DD

Chip-to-chip network (internal)

52x 400 Gbps Ethernet 8 X4 pre-connected

Chip-to-chip network (external)

24x 400 Gbps Ethernet QSFP-DD

Host storage

2x 960 GB NVMe M.2,4x 4 TB or 8 TB E1.S

Cooling Air-cooling
Fan 8x hot-swappable 9276, 2x hot-swappable 6056
Power 12 kW

11
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Figure 7. A side cross-sectional view of the Galaxy server.

A Galaxy server contains four Al accelerator modules, each equipped with eight
Wormhole chips mounted on a UBB (Universal Baseboard). Each module has a height
of 1.25U and can be replaced independently. The motherboard, CPU, and main
memory occupy an additional 1U, bringing the total server height to 6U. The eight
chips in each module are interconnected on the UBB in 42, while chips on different
UBBs are connected through the server’s backplane, with the remaining network
interfaces at the edges of the mesh exposed as the server’s 400 Gbps QSFP-DD ports, as
shown in Figure 8.

Backplane

Figure 8. The pre-connected network topology inside the Galaxy server. Ultimately,
the chips are interconnected in an 8<4 mesh and 24 QSFP-DD ports are exposed.
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Galaxy Cluster

Inter-Chip Communication Mechanism

Wormbhole has 16x 100 Gbps Ethernet interfaces, while Blackhole has 10x 400 Gbps
Ethernet interfaces. Each interface basically operates in TT-Link mode, which
implements the standard OSI Layer 1 and the Logical Link Control (LLC) sublayer of
Layer 2. In addition, each interface is paired with a RISC-V-based Ethernet core that is
also connected to the NoC and runs the TT-Fabric software stack, implementing the
upper Layers 3 to 5.

Ethernet Ethernet Ethernet Ethernet
core core core core

Tensix core hanr hann Tensix core -‘1 . . :  ... . Tensix core
Il [ l
MmN e |0 | —e—
- -\ - —\
NoC Yeceiver Ethernet link Receiver NoC ’ Ethernet link \ - uf NoC
(11D I (1110 f

Figure 9. The process of chip-to-chip data transfer.

Figure 9 illustrates the actual process of data transfer between two chips. A Tensix
core can push data into the TX queue (referred to as a sender channels in TT-Fabric)
located in the SRAM of the Ethernet core via the NoC (D). The data is then transmitted
to the neighboring chip via the direct link, and pushed into the RX queue (referred to
as a receiver channel in TT-Fabric) of the receiving Ethernet core (). The core
determines whether the packet’s destination is itself or another chip. If it is the
destination, the packet is delivered via the NoC to its target — either GDDR memory or
a Tensix core (®). If the destination is another chip, the packet is forwarded to the TX
queue of the Ethernet core corresponding to the interface that leads to that chip (@).
The packet is then sent onward to the next chip (®), repeating this process until it
reaches its final destination. As will be described later, since the chips are connected
in a torus network, packets can be efficiently delivered using simple static routing
tables.

In the Wormbhole chip, the 16 Ethernet interfaces are grouped into sets of four, each
group connected to one of four neighboring chips. They cannot be connected to more
than four chips individually. Similarly, in the Blackhole chip, eight of the ten Ethernet
interfaces are paired to connect to four neighboring chips, while the remaining two
interfaces can each connect to a different chip. That is:

® Wormbhole: 16x 100 Gbps — exposed as 4x 400 Gbps
® Blackhole: 10x 400 Gbps — exposed as 4x 800 Gbps + 2x 400 Gbps

13



This is already reflected in the configuration of the Galaxy server. Load balancing
among multiple physical links between two adjacent chips is handled by software.

Although this mechanism allows communication between distant chips, it is desirable
to ensure that communication primarily occurs between adjacent or nearby chips to
fully leverage the benefits of the Tenstorrent architecture. Fortunately, since Moreh’s
inference and training frameworks handle this automatically, users can run models
and applications without concern for the underlying network topology.

Inter-Chip Network Topology
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Scale-out network
Arbitrary # of chips

Figure 10. Example of a 2D torus network topology with 16 chips vertically and an
arbitrary number horizontally.

We arrange Galaxy servers vertically in stacks of four or eight and horizontally in an
arbitrary number to form a 2D torus network, as shown in Figure 10. Since each
Galaxy server contains Wormhole chips arranged in 8<4, the resulting cluster of N
Wormbhole chips is organized into a torus with 16 or 32 chips vertically and N/16 or
N/32 chips horizontally, respectively. For example, a cluster of 8,192 chips (from 256
Galaxy servers) is interconnected in a 256><32 torus network. All chips are seamlessly
interconnected without any distinction between connections inside and outside the
server.

The vertical and horizontal networks have identical physical performance but serve
different logical roles. The vertical network functions as a replacement for the
NVLink interconnect in a GPU server (i.e., a scale-up network). All the 16 or 32
Wormbhole chips in a column are connected in a bidirectional ring network with an
aggregate bandwidth of 100 GB/s.
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Considering the relative ratio between compute and communication performance,
this allows for lower collective communication overhead compared to eight NVIDIA
A100 GPUs connected via NVLink, which together form ring networks with an
aggregate bandwidth of 300 GB/s. In addition, by leveraging the block floating-point
format, we can reduce bandwidth requirements by half, while also benefitting from
the low latency of CPU-free, chip-to-chip communication.

The horizontal network serves as a replacement for the InfiniBand interconnect
between GPU servers (i.e., a scale-out network). In the vertical direction, it is assumed
that all 16 or 32 chips participate in collective communication. However, in the
horizontal direction, where a larger number of chips are connected, this assumption
is not always valid. Nevertheless, multiple horizontally adjacent chips can still form a
ring network with a bandwidth of 50 GB/s, which is significantly higher than the 25
GB/s achievable with InfiniBand HDR used in NVIDIA DGX A100 systems.

In the case of Blackhole, we can configure either a 3D torus or a 2D torus with a
bypassing network, enabling scalable interconnection of up to one million chips. For
even larger clusters, a torus-switch hybrid network is required, and the specific
implementation details can be discussed with Moreh.

The torus network assumes that appropriate parallelization and task allocation are
properly implemented to enable efficient collective and point-to-point
communication. For example, the most fine-grained level of parallelization should be
applied among the vertically aligned chips. This is achieved through our inference
and training frameworks.

Resource Allocation Across Jobs

In real-world data centers, it is rare for the entire cluster to be dedicated to a single
user and a single job (a training job or an inference server). In practice, multiple jobs
run concurrently, each assigned to a different set of chips.

Our basic unit of resource allocation is a column within the cluster. Each job is
allocated to all 16 or 32 chips vertically, and an arbitrary number of consecutive chips
horizontally, forming a 1D ring < 1D line. This ensures that every job can utilize a
complete ring in at least one dimension, since the presence or absence of a loopback
(i.e., ring vs line) results in a 2x difference in collective communication bandwidth.
Figure 11 shows an example.

15



| [ |
[ | [ |
[ | [ |
i i
[ | [ |
[ | [ |
l‘_j [ |
i i
[ | [ |
[ | [ |
| [ |
i i
[ | [ |
| | [ |
[ | [ |

Figure 11. Example of four jobs in a cluster, each assigned to a different set of chips.
Each job uses all 16 chips vertically, while the number of chips allocated horizontally
varies.

Host Network

Separate from the switchless torus network interconnecting multiple Tenstorrent
chips, each Galaxy server includes a host CPU, and these hosts are interconnected via
a 100 Gbps RoCE (RDMA over Converged Ethernet) host network. This network is used
for the following purposes:

® Remote access to individual servers

® Kubernetes control and data-plane networking

® Access to a distributed file system - for example, training data are
transferred to each server via the host network and then delivered to the
chips through PCle

® Transmission of inference requests (e.g., input sequences) and return of
responses (e.g., output sequences)

® Control of multiple servers and chips by the runtime systems of our inference
and training frameworks

Software Stack

TT-Metalium

TT-Metalium is a low-level programming model for Tenstorrent chips and clusters,
serving as the bridge between our higher-level software (frameworks and libraries)
and Tenstorrent hardware. In particular, the following components are primarily
used in our software stack:

® A runtime system for controlling each chip and transferring data between
the host and the chips
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® A compiler and low-level library (TT-LLK) for writing kernels executed on the
baby RISC-V sub-cores within each Tensix core
® The TT-Fabric software stack for enabling inter-chip Ethernet communication

TT-Metalium is an open-source project, and Moreh is one of its largest external
contributors. By continuously improving TT-Metalium, we aim to achieve seamless
integration and end-to-end optimization between our software and Tenstorrent
hardware.

Tensor Operation Library

We provide optimized implementations for a wide range of tensor operations
required for both inference and training of generative AI models. These serve as the
fundamental building blocks of our inference and training frameworks. Although
Tenstorrent also offers its own operation library, TT-NN, we have developed a
separate library with the following objectives:

® To support a broader range of operations, ensuring compatibility with
various PyTorch-based models — particularly by covering diverse backward
operations needed for training.

® To ensure consistent behavior and high performance across diverse
input/output patterns (e.g., tensor shapes) and operation variants. Operations
in TT-NN are often optimized and tested only for specific cases.

® To support various tensor layout combinations, thereby enabling the
compiler to apply optimized data placement and tiling schemes.

® To support multiple numerical precisions, and especially to provide
numerically stable implementations that ensure training convergence
comparable to that of GPUs.

® To provide additional specialized operations (e.g., retiling) required by our
inference and training frameworks.

Communication Library

Our inference and training framework also incorporates built-in collective and point-
to-point communication libraries. These libraries are developed as extensions of
Tenstorrent’s CCL library and provide the following capabilities:

® Deliver high performance across a wide range of data size, chip counts, and
mesh dimensions.

® Minimize end-to-end latency through spatial fusion, that is, by executing
communication concurrently with the preceding and succeeding tensor
operations on different Tensix cores within a chip.

® Minimize the number of Tensix cores dedicated to communication tasks.

17



® Support emerging communication patterns used for model disaggregation
and KV cache transfer in distributed inference (e.g., dispatch and combine),
in addition to conventional collective communication.

Moreh vLLM

Moreh vLLM is our optimized version of vLLM designed to efficiently run various
open-source or even proprietary Al models on Tenstorrent Galaxy systems. Build
upon our tensor operation and communication libraries, it consistently delivers
strong performance across diverse model architectures and sizes, input/output
lengths, concurrency levels, precisions, generation methods, the number of chips, and
other configurations. It continuously stays up to date with the latest version of open-
source VLLM and expands its model support.

Moreh vLLM can be used either as a standalone inference server or as the backend
for the MoAI Inference Framework described later. For the latter use case, Moreh
vLLM is optimized not only to run full model inference but also to execute partial
inference tasks, such as prefill-only, decode-only, or expert-specific execution.

Inference Framework

The MoAI Inference Framework is a distributed inference framework designed for
cluster systems and Kubernetes environments. It enables users to deploy inference
API endpoints for various generative AI models on Galaxy clusters at different scales.
Simply put, it can be regarded as a solution analogous to llm-d or Dynamo for NVIDIA
GPU clusters, though MoAI provides additional automation capabilities beyond those.

APl endpoint
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MoAl Inference Framework
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Figure 12. Inference software stack including Moreh vLLM running as a standalone
server and the MoAI Inference Framework for distributed inference.
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It runs multiple Moreh vLLM instances concurrently on the cluster and distributes
incoming requests among them. It also incorporates various distributed inference
techniques - such as prefill-decode disaggregation, expert parallelism, and prefix-
cache-aware routing. Furthermore, it can identify, apply, and dynamically adjust the
optimal combination of these techniques, as well as the appropriate scaling, to meet
specific service level objectives (SLOs).

Training Framework

The MoAI Training Framework is a PyTorch-compatible framework that presents a
Galaxy cluster as a single virtual device. That means, users can write their models and
training scripts as if only one large and powerful PyTorch device exists, while the
framework automatically parallelizes and optimizes execution across multiple
Tenstorrent chips within the cluster.

[ PyTorch ]

iL Single virtual device :

MoAl Training Framework
[ IR constructor ]
Moreh Al Compiler
[ Distributed runtime system ]
[ Moreh libraries ] [ Moreh libraries ] [ Moreh libraries ]
([ TT-Metalum | [ TT-Metalum | ([ TT-Metalum |
Galaxy server Galaxy server Galaxy server
Chips Chips Chips

Figure 13. Training software stack providing a single virtual PyTorch device.

Users can use existing model implementations (such as those included in Hugging
Face Transformers) and write their own training algorithms in PyTorch. The
framework preserves PyTorch’s eager programming model while internally
generating a graph-level intermediate representation (IR), transforming it through a
graph-to-graph compiler called the Moreh AI Compiler, and executing it via a
distributed runtime system (similar to LazyTensor for Google TPUs). The Moreh Al
Compiler performs not only parallelization, but also a range of optimizations to
achieve peak performance on Tenstorrent chips, including automatic tiling, SRAM
allocation, and spatial fusion.
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Conclusion

We combine Tenstorrent’s lightweight and scalable hardware with our proprietary
software stack to deliver an efficient and flexible solution for large-scale Al data
centers. This approach minimizes total cost of ownership (TCO), provides an
alternative to dominant hardware vendors, and supports a wide range of Al
workloads from inference to training.

This is not merely a replica of a GPU cluster; it is made possible through
differentiation and vertical integration across the entire stack, from unique core and
NoC architectures to a low-latency flat torus network, optimized libraries, and
frameworks that enable efficient and seamless orchestration of large numbers of
chips.

Disclaimer

The information presented in this article pertains to Moreh’s integrated solution,
which combines Tenstorrent hardware with our cluster architecture and software,
and may differ from information provided by Tenstorrent.

This article includes registered trademarks of Tenstorrent. Please refer to the page at
the following URL for a list of Tenstorrent’s trademarks:
https://tenstorrent.com/trademarks
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