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Moreh’s mission is to provide alternative options to NVIDIA GPUs for AI data centers 
through advanced software technologies. As part of this effort, we have been working 
closely with Tenstorrent and will be launching a data center solution in Q4 2025. 
Tenstorrent, led by legendary semiconductor architect Jim Keller, delivers scalable 
hardware through network-integrated AI chips. On top of that, Moreh adds its unique 
cluster architecture and software for efficiently utilizing many chips, completing a 
full-stack solution. We are confident that this is the best option to minimize the total 
cost of ownership (TCO) of AI data centers. 

This article describes the architecture of the Tenstorrent solution we provide. Our 
approach, chip architecture, cluster architecture, and software architecture are 
fundamentally differentiated from conventional NVIDIA GPUs and DGX systems. We 
explain how this enables us to optimize large-scale AI infrastructure. Below is a 
summary of our differentiators: 

⚫ Approach 
– We employ a larger number of lighter chips compared to GPUs, achieving 

high performance and efficiency at the cluster level rather than at the 
individual chip level. 

– To realize this, scalable network architecture and software capable of 
efficiently leveraging such many chips are essential. 

– Since individual chips do not require extremely high performance, they can 
be built on older process nodes (e.g., 6 nm or 12 nm) and use GDDR memory 
instead of HBM, thereby maximizing overall cost efficiency. 

– The chips are not limited to inference but can be used for both training and 
inference. This is a crucial factor for large-scale AI data centers when 
adopting a new type of processor. 

⚫ Chip architecture 
– Large software-managed SRAMs (approximately 1.5 MB per core) are 

adopted instead of a complex hardware-managed memory hierarchy such 
as coherent shared caches. With proper software support, this can minimize 
off-chip memory bandwidth requirements. 
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– Intra-chip inter-core communication is performed explicitly through a 2D 
torus Network-on-Chip (NoC), rather than indirectly via shared memory or 
caches. This allows direct data exchange between cores without consuming 
bandwidth from off-chip memory or shared caches, while giving the 
software more room to optimize data movement. 

– A block floating-point format is supported, where 16 adjacent elements 
share a common exponent. This reduces memory footprint and bandwidth 
requirements by approximately half, without causing significant impact on 
accuracy. 

⚫ Cluster architecture 
– Each chip is equipped with built-in Ethernet interfaces, enabling direct data 

transfer between two linked chips with low latency and without CPU 
intervention. 

– Multiple chips are interconnected through a torus network, without 
requiring a complex switch network (similar to Google’s TPU clustering 
approach). A torus network is beneficial for communication patterns of 
typical AI workloads. 

⚫ Software architecture 
– We provide an inference framework that performs distributed inference 

across multiple nodes and chips, presenting them as a single unified 
endpoint, and a training framework that allows multiple nodes and chips to 
operate as a single PyTorch device. 

– Data distribution, task allocation, and inter-chip communication are 
automated by software. Consequently, although the number of chips 
increases compared to a GPU cluster, the overall infrastructure becomes 
easier to utilize, with workloads distributed to enable efficient 
communication over the torus network. 

Figure 1 conceptually illustrates the overall hardware hierarchy of the Tenstorrent AI 
data center solution. Two chip generations – Wormhole and Blackhole – are currently 
available. Although they differ in detailed specifications, their architecture is largely 
similar. 
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Figure 1. Hardware hierarchy from Tensix cores to Tenstorrent chips, Galaxy servers, 
and Galaxy clusters. 

Each chip integrates numerous Tensix cores, general-purpose RISC-V cores (available 
only in Blackhole), GDDR memory interfaces, Ethernet interfaces, and PCIe interfaces, 
all connected through a unified 2D torus NoC. The Tensix cores are specialized for 
tensor operations in AI workloads and include an FPU for matrix multiplication, an 
SFPU for vector operation, and local SRAM. 

A Galaxy server is equipped with 32 Tenstorrent chips. We expect that roughly four 
Tenstorrent chips will deliver performance comparable to a single GPU. Specifically, 
four Wormhole chips correspond to one NVIDIA A100, and four Blackhole chips 
correspond to one NVIDIA H100. Therefore, a single Galaxy server with 32 chips is 
equivalent in performance to a conventional 8-GPU server. 
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Each chip’s Ethernet interfaces can be directly connected to those of other chips 
without passing through network switches. According to our cluster architecture, 
Wormhole is connected to neighboring chips in four directions – east, west, north, and 
south – while Blackhole adds two more connections in the up and down directions, for 
a total of six. Within a Galaxy server, the 32 chips are pre-connected in hardware in 
an 8×4 mesh. The Ethernet interfaces located at the “edges” of the mesh are exposed 
as the server’s Ethernet ports, which are cabled to those on neighboring servers. As a 
result, chips across multiple servers are interconnected in a flat torus network, 
seamlessly linking the inside and outside of each server without any hierarchical 
distinction. 

From the software perspective, Tenstorrent provides an open-source low-level SDK 
called TT-Metalium. It includes a runtime system, kernels (TT-LLK) and a compiler for 
the Tensix cores, and an inter-chip Ethernet communication stack (TT-Fabric). On top 
of that, we have added our own proprietary software, including tensor operation and 
communication libraries (independent of Tenstorrent’s TT-NN and CCL) as well as 
inference and training frameworks. 

Table 1 summarizes the hardware specifications of Wormhole and Blackhole. Note 
that the chips operate with different specifications when used on PCIe cards versus in 
Galaxy servers (e.g., available cores, theoretical performance, memory bandwidth, 
TDP, and interconnect configuration). All figures in the table represent the 
specifications for the Galaxy server configuration. 
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Table 1. Specifications of Wormhole and Blackhole 

Items Wormhole Blackhole 

Basic facts 
Lithography GlobalFoundries 12 nm TSMC 6 nm 
AI core architecture Tensix Tensix 
# AI cores 80 (72 available) 140 
General-purpose core architecture - RISC-V 
# general cores - 16 
Clock frequency 1.0 GHz 1.35 GHz 
TDP 250 W 300 W 
Theoretical peak performance 
TF32 matrix 73.7 TFLOPS1 193.5 TFLOPS 
FP16 matrix 73.7 TFLOPS1 193.5 TFLOPS 

BF16 matrix 147.5 TFLOPS1 387.1 TFLOPS 

BLOCKFP8 matrix 147.5 TFLOPS1 387.1 TFLOPS 

FP8 matrix 294.9 TFLOPS1 774.1 TFLOPS 

BLOCKFP4 matrix 294.9 TFLOPS1 774.1 TFLOPS 

Network-on-Chip 
Individual link bandwidth 32 B/cycle 64 B/cycle 
Aggregated bandwidth 15.36 TB/s 70.50 TB/s 
On-chip SRAM 
Total SRAM 114 MB 210 MB 
SRAM per core 1.4 MB 1.5 MB 
Off-chip memory 
Technology GDDR6 GDDR6 
Capacity 12 GB 32 GB 
Peak bandwidth 336 GB/s 512 GB/s 
Connectivity 
Host-to-chip interface PCIe Gen4 x8 or x1 PCIe Gen5 x8 or x1 
Host-to-chip bandwidth 32 GB/s 64 GB/s 
Chip-to-chip interface (physical) 16x 100 Gbps Ethernet 10x 400 Gbps Ethernet 
Chip-to-chip interface (aggregated) 4x 400 Gbps 4x 800 Gbps + 2x 400 Gbps 
Chip-to-chip total bandwidth 400 GB/s 1,000 GB/s 

 

 
1 Due to the limitations in the runtime implementation of TT-Metalium, only 72 out of 80 Tensix cores on Wormhole 
can be used for computation. Therefore, the theoretical peak performance of Wormhole shown here represents the 
performance of these 72 cores, rather than that of all 80 cores. 
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Table 2 compares the specifications between NVIDIA GPUs and Tenstorrent chips. As 
mentioned earlier, we consider four Wormhole chips to correspond to one NVIDIA 
A100 80 GB SXM, four Blackhole chips to one NVIDIA H100 SXM, and eight Blackhole 
chips to one NVIDIA B200. Based on these equivalences, we compare computational 
performance, SRAM (or L2 cache) capacity, DRAM capacity and bandwidth, and inter-
chip communication bandwidth – NVLink for NVIDIA and Ethernet for Tenstorrent. 
The values in parenthesis indicate the relative levels of Tenstorrent chips compared 
to NVIDIA GPUs; higher is better. 

Roughly speaking, four or eight Tenstorrent chips offer higher computational 
performance, more than 10x larger SRAM capacity compared to GPU’s L2 cache, and 
higher inter-chip communication bandwidth compared to NVIDIA’s NVLink. On the 
other hand, their memory bandwidth is only about half that of GPUs, but this 
limitation can be mitigated through the effective use of large on-chip SRAM and the 
block floating-point data format. 

Table 2. Comparison between NVIDIA GPUs and the corresponding four or eight 
Tenstorrent chips 

Items A100 4x 
Wormhole 

H100 4x 
Blackhole 

B200 8x 
Blackhole 

TF32 matrix2 
(TFLOPS) 

156 
(1.00x) 

295 
(1.89x) 

495 
(1.00x) 

774 
(1.56x) 

1,100 
(1.00x) 

1,548 
(1.41x) 

BF16 matrix2 
(TFLOPS) 

312 
(1.00x) 

590 
(1.89x) 

989 
(1.00x) 

1,548 
(1.56x) 

2,200 
(1.00x) 

3,097 
(1.40x) 

FP8 matrix2 
(TFLOPS) 

- 1,180 1,979 
(1.00x) 

3,097 
(1.56x) 

4,500 
(1.00x) 

6,193 
(1.38x) 

SRAM or L2 cache 
capacity (MB) 

40 
(1.00x) 

456 
(11.4x) 

50 
(1.00x) 

840 
(16.8x) 

50 
(1.00x) 

1,680 
(33.6x) 

DRAM capacity 
(GB) 

80 
(1.00x) 

48 
(0.60x) 

80 
(1.00x) 

128 
(1.60x) 

192 
(1.00x) 

256 
(1.33x) 

DRAM peak 
bandwidth (GB/s) 

2,039 
(1.00x) 

1,344 
(0.66x) 

3,352 
(1.00x) 

2,048 
(0.61x) 

7,700 
(1.00x) 

4,096 
(0.53x) 

Chip-to-chip 
interconnect 
bandwidth (GB/s) 

600 
(1.00x) 

1,0003 
(1.67x) 

900 
(1.00x) 

2,8003 
(3.11x) 

1,800 
(1.00x) 

5,2003 
(2.89x) 

 

 
2 All performance figures are based on dense matrix computations. 
3 The aggregate Ethernet bandwidth of four Wormhole chips is 1,600 GB/s, not 1,000 GB/s. However, some of their 
Ethernet links must be used to interconnect them, which is unnecessary for a single NVIDIA GPU. To ensure a fair 
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Figure 2. The architecture of a Tensix core. 

The Tensix core is the key building block of Tenstorrent processors. Figure 2 shows 
the overall structure of a Tensix core. Each core contains two computation units: an 
FPU for matrix multiplication and an SFPU for vector operations. It also includes 32 
KB of destination registers and approximately 1.5 MB of local SRAM. 

In general, data are first transferred from off-chip memory or from other cores/chips 
through the NoC (to be described later) and stored in the SRAM. The data are then 
fetched from the SRAM into the registers (called unpacking), processed by the FPU or 
SFPU, written back from the registers to the SRAM (called packing), and finally sent 
back through the NoC to off-chip memory or to other cores/chips. During this process, 
data are typically handled in tiles of 32×32 elements. 

Each Tensix core contains five “baby” RISC-V sub-cores to control these components 
simultaneously. Although the roles of each sub-core is not strictly defined, typically 
one handles data movement from the NoC to the SRAM, one manages unpacking, one 
issues FPU/SFPU instructions, one manages packing, and one handles data movement 
from the SRAM to the NoC. 

In other words, instead of implementing out-of-order execution at the hardware level, 
five baby RISC-V sub-cores run different kernel codes to explicitly achieve instruction-
level parallelism (ILP). This approach simplifies the hardware design but requires 
specialized expertise to implement high-performance Tensix kernels. As Tenstorrent’s 
leading software partner, Moreh possesses this expertise and has developed and 
delivered optimized tensor operation libraries. 

The SRAM of a Tensix core is much larger than the L1 cache of a GPU (for example, 
the L1 cache of the NVIDIA A100 is 192 KB). At the same time, as mentioned earlier, 
the total SRAM capacity – calculated as per-core SRAM size × the number of cores – 

 
comparison, the bandwidth figures presented here exclude the links required to interconnect four or eight 
Tenstorrent chips in a linear topology. 
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is also much greater than the L2 cache of a GPU. Because SRAM has its own address 
space, separate from off-chip memory that is explicitly allocated and accessed by 
software, we can precisely track which data are stored in each core’s SRAM across 
multiple kernel executions. As a result, more intermediate results (e.g., activations) 
can reside in SRAM, thereby reducing off-chip memory accesses without requiring 
explicit kernel fusion as in GPUs. This is one of the reasons Tenstorrent chips can 
adopt cost-effective GDDR instead of HBM. 

All components in a Tenstorrent chip, including Tensix cores, general-purpose RISC-V 
cores, and various interfaces are arranged in a grid structure. Figure 3 illustrates the 
logical grid layouts4 of the Wormhole and Blackhole chips. 

 

Figure 3. Logical placement of different tiles (Tensix, general-purpose RISC-V, GDDR, 
Ethernet, PCIe, ARC, and security subsystem tiles) of Wormhole and Blackhole chips. 

The Wormhole chip is organized as a 10×12 grid, in which 80 tiles are used for Tensix 
cores, 18 for GDDR interfaces, 16 for Ethernet interfaces, 1 for a PCIe interface, 1 for 
an ARC core, and the remaining 4 tiles are left empty. The Blackhole chip is organized 
as a 17×12 grid, in which 140 tiles are used for Tensix cores, 8 for general-purpose 
RISC-V cores, 24 for GDDR interfaces, 14 for Ethernet interfaces, 8 for PCIe interfaces, 
6 for SerDes modules, 2 for an ARC core and a security subsystem, and the remaining 
2 tiles are left empty. 

 
4 This figure illustrates the logical layout defined by the NoC, not the actual physical placement. The discrepancy 
between the two is due to the physical implementation of the 2D torus NoC, which is explained on the following page: 
https://tenstorrent.com/vision/community-highlight-tenstorrent-wormhole-series-part-1-physicalities 
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All tiles are interconnected through a 2D torus topology NoC. Each tile can exchange 
data bidirectionally with its neighboring tiles in the four directions – east, west, north, 
and south – at 32 bytes/cycle in Wormhole and 64 bytes/cycle in Blackhole. Each tile 
contains two NoC routers, which relay communication between non-adjacent tiles. 

 

Figure 4. A logical diagram illustrating the NoC connections between adjacent tiles. 
NoC Router 0 handles data movement in the +X and +Y directions, while NoC Router 1 

handles data movement in the -X and -Y directions. 

All on-chip data movement – for example, between two Tensix cores, between a 
Tensix core and GDDR memory, between a Tensix core and an Ethernet interface, or 
between GDDR memory and an Ethernet interface – occurs through this unified NoC. 
Specifically, the NoC provides a single address space that encompasses all Tensix core 
SRAMs, off-chip GDDR memory, and Ethernet RX/TX queues. Arbitrary data transfers 
can be implemented by programming the Tensix cores to read from and write to 
specific NoC addresses. 

This not only simplifies the chip architecture but also enables efficient and flexible 
data movement that is not possible in conventional GPUs. For instance, each core can 
directly send data from its own SRAM to Ethernet, bypassing GDDR as an 
intermediary. This reduces communication latency and saves memory bandwidth. 

The NoC supports multicast, allowing the same data to be efficiently broadcast to 
multiple tiles arranged in a row or a column. This capability enables efficient loading 
of off-chip memory data during matrix multiplications. 
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The block floating-point format is one of the approaches used to store real numbers in 
a compressed format. It is based on the observation that adjacent values belonging to 
the same array (tensor) generally share similar scales. A recent example is the 
Microscaling (MX) format, which has been adopted in some modern AI accelerators. 

 

Figure 5. Comparison among FP32, TF32, BF16, FP16, FP8 (E4M3 and E5M2), and 
Tenstorrent’s BLOCKFP8, BLOCKFP4, and BLOCKFP2 formats. 

Tenstorrent processors support their own block floating-point formats – BLOCKFP8, 
BLOCKFP4, and BLOCKFP2. Each element has its own sign and mantissa, while every 
group of 16 adjacent elements shares a single exponent. Figure 5 illustrates several 
floating-point formats for comparison. BLOCKFP8 uses a 7-bit mantissa and an 8-bit 
shared exponent, occupying an average of 8.5 bits per element, while providing the 
same dynamic range and precision as the standard BF16 type. BLOCKFP4 uses a 3-bit 
mantissa and an 8-bit shared exponent, resulting in 4.5 bits per element, yet offering a 
higher dynamic range and the same precision as FP8 E4M3. 

As a result, by replacing the commonly used BF16 and FP8 types with BLOCKFP8 and 
BLOCKFP4, the same representational precision can be achieved while reducing 
memory footprint, memory bandwidth requirements, and Ethernet bandwidth 
requirements by nearly half. Our software provides the capability to execute various 
LLM inference and training workloads using the block floating-point format. 
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Figure 6. A picture of the Galaxy server. 

Galaxy is Tenstorrent’s data center-class server product, equipped with 32 Wormhole 
processors. Its detailed specifications are shown in Table 3. A model equipped with 32 
Blackhole processors is planned to be released. 

Table 3. Specifications of the Tenstorrent Wormhole Galaxy server 

Items Description 

Form factor 6U rackmount 
Chassis dimensions W 447 mm × H 266.7 mm × D 884.5 mm 
Server weight 119 kg 
AI accelerators 32x Wormhole 
CPU 1x AMD EPYC 9004 series with TDP ≤ 280 W 
Main memory 576 GB (6x 96 GB) DDR5-4800 ECC RDIMM 
PCIe connections 4x PCIe Gen4 x8 lanes, 28x PCIe Gen4 x1 lane 
BMC management network 1x 1 GbE RJ-45 
Host network 2x 100 GbE QSFP-DD 
Chip-to-chip network (internal) 52x 400 Gbps Ethernet 8×4 pre-connected 
Chip-to-chip network (external) 24x 400 Gbps Ethernet QSFP-DD 
Host storage 2x 960 GB NVMe M.2, 4x 4 TB or 8 TB E1.S 
Cooling Air-cooling 
Fan 8x hot-swappable 9276, 2x hot-swappable 6056 
Power 12 kW 
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Figure 7. A side cross-sectional view of the Galaxy server. 

A Galaxy server contains four AI accelerator modules, each equipped with eight 
Wormhole chips mounted on a UBB (Universal Baseboard). Each module has a height 
of 1.25U and can be replaced independently. The motherboard, CPU, and main 
memory occupy an additional 1U, bringing the total server height to 6U. The eight 
chips in each module are interconnected on the UBB in 4×2, while chips on different 
UBBs are connected through the server’s backplane, with the remaining network 
interfaces at the edges of the mesh exposed as the server’s 400 Gbps QSFP-DD ports, as 
shown in Figure 8. 

 

Figure 8. The pre-connected network topology inside the Galaxy server. Ultimately, 
the chips are interconnected in an 8×4 mesh and 24 QSFP-DD ports are exposed. 



 

13 

Wormhole has 16x 100 Gbps Ethernet interfaces, while Blackhole has 10x 400 Gbps 
Ethernet interfaces. Each interface basically operates in TT-Link mode, which 
implements the standard OSI Layer 1 and the Logical Link Control (LLC) sublayer of 
Layer 2. In addition, each interface is paired with a RISC-V-based Ethernet core that is 
also connected to the NoC and runs the TT-Fabric software stack, implementing the 
upper Layers 3 to 5. 

 

Figure 9. The process of chip-to-chip data transfer. 

Figure 9 illustrates the actual process of data transfer between two chips. A Tensix 
core can push data into the TX queue (referred to as a sender channels in TT-Fabric) 
located in the SRAM of the Ethernet core via the NoC (①). The data is then transmitted 
to the neighboring chip via the direct link, and pushed into the RX queue (referred to 
as a receiver channel in TT-Fabric) of the receiving Ethernet core (②). The core 
determines whether the packet’s destination is itself or another chip. If it is the 
destination, the packet is delivered via the NoC to its target – either GDDR memory or 
a Tensix core (③). If the destination is another chip, the packet is forwarded to the TX 
queue of the Ethernet core corresponding to the interface that leads to that chip (④). 
The packet is then sent onward to the next chip (⑤), repeating this process until it 
reaches its final destination. As will be described later, since the chips are connected 
in a torus network, packets can be efficiently delivered using simple static routing 
tables. 

In the Wormhole chip, the 16 Ethernet interfaces are grouped into sets of four, each 
group connected to one of four neighboring chips. They cannot be connected to more 
than four chips individually. Similarly, in the Blackhole chip, eight of the ten Ethernet 
interfaces are paired to connect to four neighboring chips, while the remaining two 
interfaces can each connect to a different chip. That is: 

⚫ Wormhole: 16x 100 Gbps → exposed as 4x 400 Gbps 
⚫ Blackhole: 10x 400 Gbps → exposed as 4x 800 Gbps + 2x 400 Gbps 
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This is already reflected in the configuration of the Galaxy server. Load balancing 
among multiple physical links between two adjacent chips is handled by software. 

Although this mechanism allows communication between distant chips, it is desirable 
to ensure that communication primarily occurs between adjacent or nearby chips to 
fully leverage the benefits of the Tenstorrent architecture. Fortunately, since Moreh’s 
inference and training frameworks handle this automatically, users can run models 
and applications without concern for the underlying network topology. 

 

Figure 10. Example of a 2D torus network topology with 16 chips vertically and an 
arbitrary number horizontally. 

We arrange Galaxy servers vertically in stacks of four or eight and horizontally in an 
arbitrary number to form a 2D torus network, as shown in Figure 10. Since each 
Galaxy server contains Wormhole chips arranged in 8×4, the resulting cluster of N 
Wormhole chips is organized into a torus with 16 or 32 chips vertically and N/16 or 
N/32 chips horizontally, respectively. For example, a cluster of 8,192 chips (from 256 
Galaxy servers) is interconnected in a 256×32 torus network. All chips are seamlessly 
interconnected without any distinction between connections inside and outside the 
server. 

The vertical and horizontal networks have identical physical performance but serve 
different logical roles. The vertical network functions as a replacement for the 
NVLink interconnect in a GPU server (i.e., a scale-up network). All the 16 or 32 
Wormhole chips in a column are connected in a bidirectional ring network with an 
aggregate bandwidth of 100 GB/s. 
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Considering the relative ratio between compute and communication performance, 
this allows for lower collective communication overhead compared to eight NVIDIA 
A100 GPUs connected via NVLink, which together form ring networks with an 
aggregate bandwidth of 300 GB/s. In addition, by leveraging the block floating-point 
format, we can reduce bandwidth requirements by half, while also benefitting from 
the low latency of CPU-free, chip-to-chip communication. 

The horizontal network serves as a replacement for the InfiniBand interconnect 
between GPU servers (i.e., a scale-out network). In the vertical direction, it is assumed 
that all 16 or 32 chips participate in collective communication. However, in the 
horizontal direction, where a larger number of chips are connected, this assumption 
is not always valid. Nevertheless, multiple horizontally adjacent chips can still form a 
ring network with a bandwidth of 50 GB/s, which is significantly higher than the 25 
GB/s achievable with InfiniBand HDR used in NVIDIA DGX A100 systems. 

In the case of Blackhole, we can configure either a 3D torus or a 2D torus with a 
bypassing network, enabling scalable interconnection of up to one million chips. For 
even larger clusters, a torus-switch hybrid network is required, and the specific 
implementation details can be discussed with Moreh. 

The torus network assumes that appropriate parallelization and task allocation are 
properly implemented to enable efficient collective and point-to-point 
communication. For example, the most fine-grained level of parallelization should be 
applied among the vertically aligned chips. This is achieved through our inference 
and training frameworks. 

In real-world data centers, it is rare for the entire cluster to be dedicated to a single 
user and a single job (a training job or an inference server). In practice, multiple jobs 
run concurrently, each assigned to a different set of chips. 

Our basic unit of resource allocation is a column within the cluster. Each job is 
allocated to all 16 or 32 chips vertically, and an arbitrary number of consecutive chips 
horizontally, forming a 1D ring × 1D line. This ensures that every job can utilize a 
complete ring in at least one dimension, since the presence or absence of a loopback 
(i.e., ring vs line) results in a 2x difference in collective communication bandwidth. 
Figure 11 shows an example. 
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Figure 11. Example of four jobs in a cluster, each assigned to a different set of chips. 
Each job uses all 16 chips vertically, while the number of chips allocated horizontally 
varies. 

Separate from the switchless torus network interconnecting multiple Tenstorrent 
chips, each Galaxy server includes a host CPU, and these hosts are interconnected via 
a 100 Gbps RoCE (RDMA over Converged Ethernet) host network. This network is used 
for the following purposes: 

⚫ Remote access to individual servers 
⚫ Kubernetes control and data-plane networking 
⚫ Access to a distributed file system – for example, training data are 

transferred to each server via the host network and then delivered to the 
chips through PCIe 

⚫ Transmission of inference requests (e.g., input sequences) and return of 
responses (e.g., output sequences) 

⚫ Control of multiple servers and chips by the runtime systems of our inference 
and training frameworks 

TT-Metalium is a low-level programming model for Tenstorrent chips and clusters, 
serving as the bridge between our higher-level software (frameworks and libraries) 
and Tenstorrent hardware. In particular, the following components are primarily 
used in our software stack: 

⚫ A runtime system for controlling each chip and transferring data between 
the host and the chips 
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⚫ A compiler and low-level library (TT-LLK) for writing kernels executed on the 
baby RISC-V sub-cores within each Tensix core 

⚫ The TT-Fabric software stack for enabling inter-chip Ethernet communication 

TT-Metalium is an open-source project, and Moreh is one of its largest external 
contributors. By continuously improving TT-Metalium, we aim to achieve seamless 
integration and end-to-end optimization between our software and Tenstorrent 
hardware. 

We provide optimized implementations for a wide range of tensor operations 
required for both inference and training of generative AI models. These serve as the 
fundamental building blocks of our inference and training frameworks. Although 
Tenstorrent also offers its own operation library, TT-NN, we have developed a 
separate library with the following objectives: 

⚫ To support a broader range of operations, ensuring compatibility with 
various PyTorch-based models – particularly by covering diverse backward 
operations needed for training. 

⚫ To ensure consistent behavior and high performance across diverse 
input/output patterns (e.g., tensor shapes) and operation variants. Operations 
in TT-NN are often optimized and tested only for specific cases. 

⚫ To support various tensor layout combinations, thereby enabling the 
compiler to apply optimized data placement and tiling schemes. 

⚫ To support multiple numerical precisions, and especially to provide 
numerically stable implementations that ensure training convergence 
comparable to that of GPUs. 

⚫ To provide additional specialized operations (e.g., retiling) required by our 
inference and training frameworks. 

Our inference and training framework also incorporates built-in collective and point-
to-point communication libraries. These libraries are developed as extensions of 
Tenstorrent’s CCL library and provide the following capabilities: 

⚫ Deliver high performance across a wide range of data size, chip counts, and 
mesh dimensions. 

⚫ Minimize end-to-end latency through spatial fusion, that is, by executing 
communication concurrently with the preceding and succeeding tensor 
operations on different Tensix cores within a chip. 

⚫ Minimize the number of Tensix cores dedicated to communication tasks. 
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⚫ Support emerging communication patterns used for model disaggregation 
and KV cache transfer in distributed inference (e.g., dispatch and combine), 
in addition to conventional collective communication. 

Moreh vLLM is our optimized version of vLLM designed to efficiently run various 
open-source or even proprietary AI models on Tenstorrent Galaxy systems. Build 
upon our tensor operation and communication libraries, it consistently delivers 
strong performance across diverse model architectures and sizes, input/output 
lengths, concurrency levels, precisions, generation methods, the number of chips, and 
other configurations. It continuously stays up to date with the latest version of open-
source vLLM and expands its model support. 

Moreh vLLM can be used either as a standalone inference server or as the backend 
for the MoAI Inference Framework described later. For the latter use case, Moreh 
vLLM is optimized not only to run full model inference but also to execute partial 
inference tasks, such as prefill-only, decode-only, or expert-specific execution. 

The MoAI Inference Framework is a distributed inference framework designed for 
cluster systems and Kubernetes environments. It enables users to deploy inference 
API endpoints for various generative AI models on Galaxy clusters at different scales. 
Simply put, it can be regarded as a solution analogous to llm-d or Dynamo for NVIDIA 
GPU clusters, though MoAI provides additional automation capabilities beyond those. 

 

Figure 12. Inference software stack including Moreh vLLM running as a standalone 
server and the MoAI Inference Framework for distributed inference. 
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It runs multiple Moreh vLLM instances concurrently on the cluster and distributes 
incoming requests among them. It also incorporates various distributed inference 
techniques – such as prefill-decode disaggregation, expert parallelism, and prefix-
cache-aware routing. Furthermore, it can identify, apply, and dynamically adjust the 
optimal combination of these techniques, as well as the appropriate scaling, to meet 
specific service level objectives (SLOs). 

The MoAI Training Framework is a PyTorch-compatible framework that presents a 
Galaxy cluster as a single virtual device. That means, users can write their models and 
training scripts as if only one large and powerful PyTorch device exists, while the 
framework automatically parallelizes and optimizes execution across multiple 
Tenstorrent chips within the cluster. 

 

Figure 13. Training software stack providing a single virtual PyTorch device. 

Users can use existing model implementations (such as those included in Hugging 
Face Transformers) and write their own training algorithms in PyTorch. The 
framework preserves PyTorch’s eager programming model while internally 
generating a graph-level intermediate representation (IR), transforming it through a 
graph-to-graph compiler called the Moreh AI Compiler, and executing it via a 
distributed runtime system (similar to LazyTensor for Google TPUs). The Moreh AI 
Compiler performs not only parallelization, but also a range of optimizations to 
achieve peak performance on Tenstorrent chips, including automatic tiling, SRAM 
allocation, and spatial fusion. 
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We combine Tenstorrent’s lightweight and scalable hardware with our proprietary 
software stack to deliver an efficient and flexible solution for large-scale AI data 
centers. This approach minimizes total cost of ownership (TCO), provides an 
alternative to dominant hardware vendors, and supports a wide range of AI 
workloads from inference to training. 

This is not merely a replica of a GPU cluster; it is made possible through 
differentiation and vertical integration across the entire stack, from unique core and 
NoC architectures to a low-latency flat torus network, optimized libraries, and 
frameworks that enable efficient and seamless orchestration of large numbers of 
chips. 

The information presented in this article pertains to Moreh’s integrated solution, 
which combines Tenstorrent hardware with our cluster architecture and software, 
and may differ from information provided by Tenstorrent. 

This article includes registered trademarks of Tenstorrent. Please refer to the page at 
the following URL for a list of Tenstorrent’s trademarks: 
https://tenstorrent.com/trademarks 
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