[Technical Report]

21K Output Tokens Per Second
DeepSeek Inference on

AMD Instinct MI300X GPUs with
Expert Parallelism

Moreh, Inc.

November 2025

]
"
Copyright ©2025 Moreh, Inc. All rights reserved. M‘ R E H

Contents

OVETIVIEBW ..ottt ettt st s b bbb ettt es
Parallelization MethOccciiiiiiiiiiiie ettt sne
Performance OPtiIMIZAtIONScccoeveeereririrtrtniriririsieieieieieesee e eseessestssssss s se s sene
Load Balancing BetWeen GPUS........cccovrieininiiiiiececceceeesssiessssssssssssssssesssesesesesesenene
Computation-Communication OVErlappPingcccceeererrerererenreneneneseseseseseseseseesesesesnene
Library OPtiMIZAtiONScccccceeeereeererereeerereneeeesesee et et see s se e seesene
Leveraging HIP GIraPhiS ..ottt nne
Experimental Method ...ttt e
EXPerimental RESULLSc.ccviiiiririeiiriecetrt ettt ettt st se s sa s anees

000} 4 16l 16 15310) o LPU SRR

21K Output Tokens Per Second

DeepSeek Inference on
AMD Instinct MI300X GPUs with
Expert Parallelism

Overview

One of the major breakthroughs in large language models (LLMs) is the adoption of
the Mixture-of-Experts (MoE) architecture. Instead of a single large feed-forward
network (FFN) layer, the model contains multiple smaller FFN layers, each referred to
as an expert. For each token, a lightweight gating network dynamically selects only a
small subset of experts to process each step. This conditional computation allows MoE
models to scale to extremely large parameter counts while maintaining efficient
compute usage. For example, the DeepSeek-R1 671B model that caused quite a stir
when it was released in January 2025 and OpenATI’s popular open-source GPT-OSS
120B model that was released in August 2025 both use the MoE architecture.

However, due to the large size and sparse design, models like DeepSeek-R1 require
advanced optimization techniques to serve efficiently at scale. In particular, we can
achieve high throughput (i.e., total output tokens per second) by applying expert
parallelism (EP). This is because (1) only a subset of experts is stored in GPU memory,
allowing for a larger batch size, and (2) the parameters of individual experts can be
reused more once they are loaded, thereby improving FLOPS per byte. However,
challenges arise in efficiently implementing the fine-grained communication pattern
known as dispatch/combine — which transfers activations to the GPUs responsible for
the activated experts — and in resolving the imbalance among experts.

Moreh, a software partner of AMD, recently demonstrated that DeepSeek-R1
inference can be executed at high throughput by implementing EP on the ROCm
software stack. To actually attain such high performance in LLM inference, carefully
optimized software is required across multiple layers of the stack. The Moreh team
applies various optimizations at both the library and model implementation levels. As
a result, they achieved a decoding throughput of >21,000 tokens/sec on a server
equipped with 8x AMD Instinct MI300X GPUs.

Parallelization Method

In the DeepSeek R1 model, each decoder block contains 256 experts, among which 8
are activated for each token. In addition, there is a shared expert that is always
executed regardless of routing, and a Multi-Head Latent Attention (MLA) layer, a new
attention mechanism introduced by DeepSeek.

EP is typically implemented in combination with data parallelism (DP). Each GPU
holds and executes a distinct subset of experts. Meanwhile, for components that are
always executed — such as the shared expert and the MLA — each GPU processes a
separate batch of requests in parallel. Accordingly, we applied a parallelization
configuration of DP=8 and EP=8 per node. That is, each GPU is responsible for 32
experts.

GPU1 GPU 2 GPU 3 GPU 8
[Batcn1] [Batch2 | [Batch3z |
1 1 {
Multi-Head Multi-Head Multi-Head Multi-Head
Latent Latent Latent Latent
Attention Attention Attention Attention
T T T T DP:S
Gating Gating Gating Gating
Network Network Network Network
1 i 1
[Batch1] [Batch2 | [Batch3z |
| Dispatch ‘
!] 1
Expert Expert Expert Expert EP=8
Set1 Set 2 Set3 Set 8 -

i 1 1

Combine

Shared Shared Shared [| ween Shared DP=8
Expert Expert Expert Expert

! 1 I i

Furthermore, applying prefill-decode disaggregation — that is, executing the prefill
and decode stages on separate nodes — can further increase the overall throughput of
the cluster system. The prefill stage processes the entire input sequence at once and is
more compute-bound, whereas the decode stage generates the output tokens one by
one in an autoregressive manner and is more memory-bound. By not only separating
the execution but also tailoring parallelization and optimization configurations to the
distinct computational characteristics of prefill and decode, GPU efficiency can be
further improved. In this article, we focus our evaluation primarily on the
performance of the decode stage, since in typical applications the majority of GPUs
are devoted to decoding.

Performance Optimizations

Simply implementing a new parallelization method does not automatically yield the
best performance. To fully unlock the hardware’s potential, the entire software stack
from libraries to model implementation must be optimized to accommodate the new
computation and communication patterns. The Moreh team implemented several
optimizations based on vLLM, as described below.

Load Balancing Between GPUs

One of the major challenges in implementing EP is that the workload is not evenly
distributed across GPUs and varies depending on the routing results. Although MoE
models are trained to minimize this imbalance as much as possible, there are still
inherent limitations. DeepSeek also acknowledged this issue and reported using their
own load-balancing method called EPLB to address it.

Without applying any explicit load-balancing strategy, we observed up to a 2x
workload imbalance across GPUs when experts were simply divided into eight
consecutive chunks — that is, assigning experts 0-31 to the first GPU, 32-63 to the
second, ..., and 224-255 to the last. We designed an algorithm that measures the
activation frequency of each expert, and groups the 256 experts into eight sets of 32
such that the total activation frequency of each set is as balanced as possible. (This
can be seen as a variant of the balanced number partitioning problem.) The algorithm
then reorders the experts so that each set is placed contiguously and applies EP on
that. Since the activation frequency of experts varies across decoder blocks, this
process is performed separately for each decoder. The gating network must also
produce routing results that reflect the new expert permutation.

As a result, we successfully reduced the workload imbalance across GPUs to within
5%. To the best of our knowledge, this is the first EP load balancing implementation
on AMD GPUs. In real-world serving scenarios, continuous load balancing can be
achieved by periodically re-measuring the activation frequencies and generating new
expert permutations accordingly.

Computation-Communication Overlapping

Another challenge in applying EP is minimizing the overhead caused by
dispatch/combine all-to-all communications. Dividing the batch into two
microbatches and executing them concurrently allows the communication of one
microbatch to overlap with the computation of the other. When the batch size is
sufficiently large — that is, in high-throughput scenarios — this approach can
effectively hide communication latency without sacrificing computational
performance.

Attention, Shared,
Microbatch 0
Gate, H Dispatch, }——-| Expertsg H Combine, /
Shared1 Attention,
Microbatch 1 /
Experts,; H Combine, Gate1

Interleaved Execution Schedule of Dual Batch Overlap

Computation ‘ Attention, | | Gatey | ‘ Experts, ‘ ‘Sharedl‘ ‘ Expertsg | ‘Shared0| I Attention, | | Gate, |

Communication ‘ Dispatch, | | Combine, |

There are several implementation variations of this approach, among which we
adopted vLLM’s DBO (Dual Batch Overlap) system. We modified the DBO system to
use MORI-EP, and in particular, we enhanced the MORI-EP library so that its
communication operations can be invoked from the two worker threads of DBO and
are properly synchronized with other computations.

Library Optimizations

The Moreh team has also applied several library optimizations to maximize GPU
efficiency and improve both throughput (tokens/sec) and latency (time to first token
and inter-token latency). Here are selective examples of optimizations.

® Optimal GEMM and Attention Kernel Selection: dynamically selects the
optimal GEMM and Attention kernels without the need for online profiling
and manual tuning.

® Fused MoE Kernel Optimization: implements a highly optimized fused MoE
kernel that delivers better performance than AMD’s AITER library,
particularly for small batch sizes.

® FP8 KV Cache Support: implements Multi-head Latent Attention (MLA)
kernels that enable the KV cache to be stored and loaded in FP8 format, to
improve performance especially in long-context scenarios.

® Vertical and Horizontal Kernel Fusion: employs both vertical fusion (e.g.,
fused RoPE kernels) and horizontal fusion (e.g., merging multiple GEMMs in
shared experts) to reduce kernel overhead and improve computational
efficiency.

For details on these library-level optimizations and their performance improvements
independent of EP, please refer to Moreh’s technical report.

Leveraging HIP Graphs

HIP Graphs is a technique that reduces CPU runtime overhead by capturing multiple
GPU operations into a static graph and issuing them all at once. This is particularly

https://moreh.io/technical-report/moreh-vllm-performance-evaluation-deepseek-v3-r1-671b-on-amd-instinct-mi300x-gpus-250829/

essential in the decode stage, where individual operations are relatively short,
making it critical to fully utilize the GPU. However, constructing a static graph
requires that the tensor sizes passed between operations should be fixed. In EP,
however, the input size for each expert is inherently dynamic and determined by the
routing results, making it highly challenging to represent this as a static graph.

We modified the DeepSeek model implementation in vLLM to make tensor sizes as
static as possible while still supporting EP. This enabled us to take full advantage of
HIP Graph, thereby minimizing CPU overhead. Incorporating MoRI library operations
into the graph posed several technical challenges, but we finally succeeded in
including MORI-EP’s dispatch/combine operations as part of the graph execution.

Experimental Method

Our experiments were conducted on an MI300X server with the following
specifications.

CPU: 2x AMD EPYC 9474F 48-core 3.6 GHz

Main memory: 2,304 GB

GPU: 8x AMD Instinct MI300X OAM GPU 192 GB
Server: Gigabyte G593-ZX1-AAX1

Operating system: Ubuntu 22.04.4 LTS

® ROCm version: 6.4.1

We designed the evaluation methodology by referring to the LMSys blog post. In that
post, the key metrics for evaluating EP performance — assuming prefill/decode
disaggregation — are the total throughput (tokens/sec) per decode node and the inter-
token latency. While LMSys implemented prefill/decode disaggregation across 12
nodes, we aimed to measure decode performance even in a single-node environment.
To achieve this, we made several modifications to vLLM as follows:

® On the server side, we excluded the prefill time and accumulated only the
decode time and token count to measure decode throughput separately. Inter-
token latency can still be measured on the client side using the standard
benchmarking approach.

® The scheduler of the vLLM V1 engine originally executes prefill and decode
requests in a single batch (referred to as mixed prefill), making it impossible
to exclude the prefill time. We modified it so that prefill and decode requests
are issued to separate queues and executed independently.

The following command can be used to send requests to the (modified) vLLM server
and measure performance.

vllm bench serve \
--backend vllm \

https://lmsys.org/blog/2025-05-05-large-scale-ep/

--model "deepseek-ai/DeepSeek-R1" \
--metric-percentiles "10,25,50,75,90" \
--percentile-metrics "itl,tps,ttft,e2el” \
--port 8001 \

--num-prompts 2048 \

--max-concurrency 2048 \

--ignore-eos \

--dataset-name sharegpt \

--dataset-path /app/dataset/ShareGPT_V3_unfiltered_cleaned_split.json \
--sharegpt-input-len 2000 \
--sharegpt-output-len 100

Experimental Results

We measured the throughput (per node) and inter-token latency for four different
concurrency levels (1024, 2048, 3072, and 4096) to observe the trade-off between
latency and throughput. The results are as follows.

Table 1. Experimental results

Concurrency | Throughput Inter-token latency (ms)
(tokens/sec) | p10 P25 P50 P75 P90 Mean
(median)
1024 10,030.0 49.49 100.15 102.69 104.94 112.26 102.94
2048 18,348.6 81.22 87.85 91.48 96.06 126.70 116.92
3072 19,412.7 105.52 121.03 145.08 167.47 229.79 166.10
4096 21,224.6 145.13 158.41 160.75 167.25 216.61 197.13

We achieved a throughput of 21,224.6 tokens/sec at the highest concurrency level.
This is nearly equivalent to the 22,282 tokens/sec reported by the SGLang team on an
8x NVIDIA H100 GPU server, confirming that our implementation delivers state-of-
the-art EP performance. Meanwhile, even in the configuration optimized for minimal
latency (with a median inter-token latency of 91.48 ms), throughput decreased by less
than 15%, demonstrating that the system can flexibly adjust its maximum
concurrency according to the target SLOs (Service Level Objectives).

Conclusion

Moreh successfully implemented high-throughput inference with EP on AMD Instinct
MI300 series GPUs by applying and optimizing a variety of techniques for MoE
models. We also provides the MoAI Inference Framework, which automatically
applies various distributed inference techniques including the efficient EP

implementation explained in this article, on AMD Instinct GPU clusters. For more
information, please visit the Moreh website.

https://moreh.io/

ME@REH

To learn more, please visit our website (https://moreh.io) or
contact us (contact@moreh.io).

Copyright ©2025 Moreh, Inc. All rights reserved.

The information contained herein is for informational purposes only and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions, and typographical errors, and Moreh, Inc. is under no obligation to update or
otherwise correct this information. Moreh, Inc. makes no representations or warranties with respect to the
accuracy or completeness of the contents of this document and assumes no liability of any kind for the
consequences or use of such information or for any infringement of patents. Moreh, Inc. reserves the right to
make corrections, modifications, enhancements, improvements, and other changes to this information, at
any time and/or to discontinue any service without notice.

