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21K Output Tokens Per Second  

DeepSeek Inference on  

AMD Instinct MI300X GPUs with  

Expert Parallelism  

Overview  

One of the major breakthroughs in large language models (LLMs) is the adoption of 
the Mixture-of-Experts (MoE) architecture. Instead of a single large feed-forward 
network (FFN) layer, the model contains multiple smaller FFN layers, each referred to 
as an expert. For each token, a lightweight gating network dynamically selects only a 
small subset of experts to process each step. This conditional computation allows MoE 
models to scale to extremely large parameter counts while maintaining efficient 
compute usage. For example, the DeepSeek-R1 671B model that caused quite a stir 
when it was released in January 2025 and OpenAI’s popular open-source GPT-OSS 
120B model that was released in August 2025 both use the MoE architecture. 

However, due to the large size and sparse design, models like DeepSeek-R1 require 
advanced optimization techniques to serve efficiently at scale. In particular, we can 
achieve high throughput (i.e., total output tokens per second) by applying expert 
parallelism (EP). This is because (1) only a subset of experts is stored in GPU memory, 
allowing for a larger batch size, and (2) the parameters of individual experts can be 
reused more once they are loaded, thereby improving FLOPS per byte. However, 
challenges arise in efficiently implementing the fine-grained communication pattern 
known as dispatch/combine — which transfers activations to the GPUs responsible for 
the activated experts — and in resolving the imbalance among experts. 

Moreh, a software partner of AMD, recently demonstrated that DeepSeek-R1 
inference can be executed at high throughput by implementing EP on the ROCm 
software stack. To actually attain such high performance in LLM inference, carefully 
optimized software is required across multiple layers of the stack. The Moreh team 
applies various optimizations at both the library and model implementation levels. As 
a result, they achieved a decoding throughput of >21,000 tokens/sec on a server 
equipped with 8x AMD Instinct MI300X GPUs. 
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Parallelization Method  

In the DeepSeek R1 model, each decoder block contains 256 experts, among which 8 
are activated for each token. In addition, there is a shared expert that is always 
executed regardless of routing, and a Multi-Head Latent Attention (MLA) layer, a new 
attention mechanism introduced by DeepSeek. 

EP is typically implemented in combination with data parallelism (DP). Each GPU 
holds and executes a distinct subset of experts. Meanwhile, for components that are 
always executed — such as the shared expert and the MLA — each GPU processes a 
separate batch of requests in parallel. Accordingly, we applied a parallelization 
configuration of DP=8 and EP=8 per node. That is, each GPU is responsible for 32 
experts. 

 

Furthermore, applying prefill-decode disaggregation — that is, executing the prefill 
and decode stages on separate nodes — can further increase the overall throughput of 
the cluster system. The prefill stage processes the entire input sequence at once and is 
more compute-bound, whereas the decode stage generates the output tokens one by 
one in an autoregressive manner and is more memory-bound. By not only separating 
the execution but also tailoring parallelization and optimization configurations to the 
distinct computational characteristics of prefill and decode, GPU efficiency can be 
further improved. In this article, we focus our evaluation primarily on the 
performance of the decode stage, since in typical applications the majority of GPUs 
are devoted to decoding. 
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Performance Optimizations  

Simply implementing a new parallelization method does not automatically yield the 
best performance. To fully unlock the hardware’s potential, the entire software stack 
from libraries to model implementation must be optimized to accommodate the new 
computation and communication patterns. The Moreh team implemented several 
optimizations based on vLLM, as described below. 

Load Balancing Between GPUs  

One of the major challenges in implementing EP is that the workload is not evenly 
distributed across GPUs and varies depending on the routing results. Although MoE 
models are trained to minimize this imbalance as much as possible, there are still 
inherent limitations. DeepSeek also acknowledged this issue and reported using their 
own load-balancing method called EPLB to address it. 

Without applying any explicit load-balancing strategy, we observed up to a 2x 
workload imbalance across GPUs when experts were simply divided into eight 
consecutive chunks — that is, assigning experts 0-31 to the first GPU, 32-63 to the 
second, …, and 224-255 to the last. We designed an algorithm that measures the 
activation frequency of each expert, and groups the 256 experts into eight sets of 32 
such that the total activation frequency of each set is as balanced as possible. (This 
can be seen as a variant of the balanced number partitioning problem.) The algorithm 
then reorders the experts so that each set is placed contiguously and applies EP on 
that. Since the activation frequency of experts varies across decoder blocks, this 
process is performed separately for each decoder. The gating network must also 
produce routing results that reflect the new expert permutation. 

As a result, we successfully reduced the workload imbalance across GPUs to within 
5%. To the best of our knowledge, this is the first EP load balancing implementation 
on AMD GPUs. In real-world serving scenarios, continuous load balancing can be 
achieved by periodically re-measuring the activation frequencies and generating new 
expert permutations accordingly. 

Computation - Communication Overlapping  

Another challenge in applying EP is minimizing the overhead caused by 
dispatch/combine all-to-all communications. Dividing the batch into two 
microbatches and executing them concurrently allows the communication of one 
microbatch to overlap with the computation of the other. When the batch size is 
sufficiently large — that is, in high-throughput scenarios — this approach can 
effectively hide communication latency without sacrificing computational 
performance. 



 

4 

 

There are several implementation variations of this approach, among which we 
adopted vLLM’s DBO (Dual Batch Overlap) system. We modified the DBO system to 
use MORI-EP, and in particular, we enhanced the MORI-EP library so that its 
communication operations can be invoked from the two worker threads of DBO and 
are properly synchronized with other computations. 

Library Optimizations  

The Moreh team has also applied several library optimizations to maximize GPU 
efficiency and improve both throughput (tokens/sec) and latency (time to first token 
and inter-token latency). Here are selective examples of optimizations. 

⚫ Optimal GEMM and Attention Kernel Selection: dynamically selects the 
optimal GEMM and Attention kernels without the need for online profiling 
and manual tuning. 

⚫ Fused MoE Kernel Optimization: implements a highly optimized fused MoE 
kernel that delivers better performance than AMD’s AITER library, 
particularly for small batch sizes. 

⚫ FP8 KV Cache Support: implements Multi-head Latent Attention (MLA) 
kernels that enable the KV cache to be stored and loaded in FP8 format, to 
improve performance especially in long-context scenarios. 

⚫ Vertical and Horizontal Kernel Fusion: employs both vertical fusion (e.g., 
fused RoPE kernels) and horizontal fusion (e.g., merging multiple GEMMs in 
shared experts) to reduce kernel overhead and improve computational 
efficiency. 

For details on these library-level optimizations and their performance improvements 
independent of EP, please refer to Moreh’s technical report. 

Leveraging HIP Graphs  

HIP Graphs is a technique that reduces CPU runtime overhead by capturing multiple 
GPU operations into a static graph and issuing them all at once. This is particularly 

https://moreh.io/technical-report/moreh-vllm-performance-evaluation-deepseek-v3-r1-671b-on-amd-instinct-mi300x-gpus-250829/
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essential in the decode stage, where individual operations are relatively short, 
making it critical to fully utilize the GPU. However, constructing a static graph 
requires that the tensor sizes passed between operations should be fixed. In EP, 
however, the input size for each expert is inherently dynamic and determined by the 
routing results, making it highly challenging to represent this as a static graph. 

We modified the DeepSeek model implementation in vLLM to make tensor sizes as 
static as possible while still supporting EP. This enabled us to take full advantage of 
HIP Graph, thereby minimizing CPU overhead. Incorporating MoRI library operations 
into the graph posed several technical challenges, but we finally succeeded in 
including MORI-EP’s dispatch/combine operations as part of the graph execution. 

Experimental Method  

Our experiments were conducted on an MI300X server with the following 
specifications. 

⚫ CPU: 2x AMD EPYC 9474F 48-core 3.6 GHz 
⚫ Main memory: 2,304 GB 
⚫ GPU: 8x AMD Instinct MI300X OAM GPU 192 GB 
⚫ Server: Gigabyte G593-ZX1-AAX1 
⚫ Operating system: Ubuntu 22.04.4 LTS 
⚫ ROCm version: 6.4.1 

We designed the evaluation methodology by referring to the LMSys blog post. In that 
post, the key metrics for evaluating EP performance — assuming prefill/decode 
disaggregation — are the total throughput (tokens/sec) per decode node and the inter-
token latency. While LMSys implemented prefill/decode disaggregation across 12 
nodes, we aimed to measure decode performance even in a single-node environment. 
To achieve this, we made several modifications to vLLM as follows: 

⚫ On the server side, we excluded the prefill time and accumulated only the 
decode time and token count to measure decode throughput separately. Inter-
token latency can still be measured on the client side using the standard 
benchmarking approach. 

⚫ The scheduler of the vLLM V1 engine originally executes prefill and decode 
requests in a single batch (referred to as mixed prefill), making it impossible 
to exclude the prefill time. We modified it so that prefill and decode requests 
are issued to separate queues and executed independently. 

The following command can be used to send requests to the (modified) vLLM server 
and measure performance. 

vllm bench serve \ 
    --backend vllm \ 

https://lmsys.org/blog/2025-05-05-large-scale-ep/
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    --model "deepseek-ai/DeepSeek-R1" \ 
    --metric-percentiles "10,25,50,75,90" \ 
    --percentile-metrics "itl,tps,ttft,e2el" \ 
    --port 8001 \ 
    --num-prompts 2048 \ 
    --max-concurrency 2048 \ 
    --ignore-eos \ 
    --dataset-name sharegpt \ 
    --dataset-path /app/dataset/ShareGPT_V3_unfiltered_cleaned_split.json \ 
    --sharegpt-input-len 2000 \ 
    --sharegpt-output-len 100 

 

Experimental Results  

We measured the throughput (per node) and inter-token latency for four different 
concurrency levels (1024, 2048, 3072, and 4096) to observe the trade-off between 
latency and throughput. The results are as follows. 

Table 1. Experimental results 

Concurrency Throughput 
(tokens/sec) 

Inter-token latency (ms) 
P10 P25 P50 

(median) 
P75 P90 Mean 

1024 10,030.0 49.49 100.15 102.69 104.94 112.26 102.94 
2048 18,348.6 81.22 87.85 91.48 96.06 126.70 116.92 
3072 19,412.7 105.52 121.03 145.08 167.47 229.79 166.10 
4096 21,224.6 145.13 158.41 160.75 167.25 216.61 197.13 

 

We achieved a throughput of 21,224.6 tokens/sec at the highest concurrency level. 
This is nearly equivalent to the 22,282 tokens/sec reported by the SGLang team on an 
8x NVIDIA H100 GPU server, confirming that our implementation delivers state-of-
the-art EP performance. Meanwhile, even in the configuration optimized for minimal 
latency (with a median inter-token latency of 91.48 ms), throughput decreased by less 
than 15%, demonstrating that the system can flexibly adjust its maximum 
concurrency according to the target SLOs (Service Level Objectives). 

Conclusion  

Moreh successfully implemented high-throughput inference with EP on AMD Instinct 
MI300 series GPUs by applying and optimizing a variety of techniques for MoE 
models. We also provides the MoAI Inference Framework, which automatically 
applies various distributed inference techniques including the efficient EP 
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implementation explained in this article, on AMD Instinct GPU clusters. For more 
information, please visit the Moreh website. 

 

https://moreh.io/
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To learn more, please visit our website (https://moreh.io) or 

contact us (contact@moreh.io) . 
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